Macro-based type providers in Scala

Eugene Burmako and Travis Brown

Ecole Polytechnique Fédérale de Lausanne
University of Maryland, College Park

5 APRIL 2014

WHAT ARE TYPE PROVIDERS, ANYWAY?

WHAT ARE TYPE PROVIDERS, ANYWAY?

Compile-time metaprogramming facilities for
“information rich programming”

DA

WHAT ARE TYPE PROVIDERS, ANYWAY?

Compile-time metaprogramming facilities for
“information rich programming”*

*to borrow a phrase from the F# community

A TYPE PROVIDER...
reads information from a data source

[2] makes that information available to the program in types

v

v

v

v

EXAMPLES OF INFORMATION SOURCES
An XSD schema for XML
A JSON-LD context
A Web Service Description Language file

SQL table definitions and stored procedures

DA

MOTIVATION

» You've got schemas that describe your data

» You want to use these descriptions in your code

» You don’t want to repeat yourself!

DA

EXAMPLE: SCHEMA BINDINGS FOR RDF

@prefix dc: <http://purl.org/dc/terms/>.
@prefix dct: <http://purl.org/dc/dcmitype/>.
@prefix sga: <http://shelleygodwinarchive.org/>.
@prefix wiki: <https://en.wikipedia/wiki/>.

sga:ms—-abinger-c57 a dct:Text.
sga:ms-abinger-c57 dc:title "Frankenstein Draft Notebook B"Gen.
sga:ms—-abinger-c57 dc:creator wiki:Mary Shelley.

EXAMPLE: SCHEMA BINDINGS FOR RDF

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>.
@prefix dc: <http://purl.org/dc/terms/>.

dc:title a rdf:Property;
rdfs:comment "A name given to the resource."@en;
rdfs:isDefinedBy dcterms:;
rdfs:label "Title"len;
rdfs:range rdfs:Literal.

dc:creator a rdf:Property;
and on and on...

Q>

EXAMPLE: SCHEMA BINDINGS FOR RDF
val frankensteinNotebookB

(
.a(dct.Text)

URI ("http://shelleygodwinarchive.org/ms—-abinger—-c57")
—— dc.title —>-—

—— dc.creator —=>- URI(

"Frankenstein Draft Notebook B"

"https://en.wikipedia.org/wiki/Mary_Shelley"

EXAMPLE: SCHEMA BINDINGS FOR RDF

Follow along with example code and documentation:
<https://github.com/travisbrown/type-provider-examples>

WEe'll be using the W3C's Banana RDF library throughout:
<https://github.com/w3c/banana-rdf>

LOW-TECH SOLUTIONS

10

val title

DEFINING SCHEMA BINDINGS MANUALLY

object dc extends PrefixBuilder ("http://purl.org/dc/terms/")
apply("title™)

val creator = apply("creator")

// and on and on.

{

n

val title

DEFINING SCHEMA BINDINGS MANUALLY

object dc extends PrefixBuilder ("http://purl.org/dc/terms/")
apply ("title™)

val creator = apply("creator")

// and on and on..

}

{

But we're just repeating the RDF Schema we've seen above...

n

DEFINING SCHEMA BINDINGS MANUALLY

» These vocabularies can be large (hundreds of terms)

» We're just repeating information from the RDF Schema
» We don't want to repeat ourselves!

DA

12

TRADITIONAL SOLUTION: TEXTUAL CODE GENERATION

» Tied to a specific (often ad-hoc) build process

v

Concatenating strings is unpleasant and error-prone

v

Oblivious to semantics, e.g. dependencies between
modules of the program

v

Hard to customize

v

Easy to get out of sync

Rl S = : 9DaC

13

IMPLEMENTING TYPE PROVIDERS

» In F#: special support is built into the compiler

» In Scala: we can use the general purpose macro system

14

IMPLEMENTING TYPE PROVIDERS

» In F#: special support is built into the compiler

» In Scala: we can use the general purpose macro system

...WITH SCALA MACROS

» Anonymous type providers via def macros

» Public type providers via macro annotations

14

ANONYMOUS TYPE PROVIDERS

15

IN ACTION

fromSchema (" /dcterms.rdf")

16

IN ACTION

fromSchema (" /dcterms.rdf")

That's all!

16

How IT WORKS
» Parses the schema resource

» Creates an instance of a structural type

» scalac figures out the rest

17

How IT WORKS

» Parses the schema resource at compile time

» Creates an instance of a structural type
» scalac figures out the rest

17

val dc =

val title

GENERATED CODE

new PrefixBuilder ("http://purl.org/dc/terms/")
= apply("title")

val creator =

// et cetera...

apply("creator")

{

DA

18

IMPLEMENTED WITH A MACRO
object PrefixGenerator {

def fromSchema (path: String)
def impl(c:

macro impl
Context) (path:

c.Expr[String])

Q>

19

ADVANTAGES OF THE ANONYMOUS APPROACH

» Familiar syntax—just a method call

» Works in official Scala 2.10 and 2.11

20

ADVANTAGES OF THE ANONYMOUS APPROACH

» Familiar syntax—just a method call

» Works in official Scala 2.10 and 2.11

DISADVANTAGES
» Structural types don't work in Java

» Structural types involve reflective access in Scala

20

ADVANTAGES OF THE ANONYMOUS APPROACH

» Familiar syntax—just a method call

» Works in official Scala 2.10 and 2.11

DISADVANTAGES
» Structural types don't work in Java

» Structural types involve reflective access in Scala*

*but there's a partial workaround—see the example project

20

PuBLIC TYPE PROVIDERS

21

IN ACTION

@fromSchema (" /dcterms.rdf") object dc extends PrefixBuilder

: 9DaC

22

How IT WORKS
» Also parses the schema resource at compile-time

» Uses the provided object as a template

» Populates the object with generated members

DA

23

val title

GENERATED CODE

object dc extends PrefixBuilder ("http://purl.org/dc/terms/")
apply("title™)
val creator =

apply("creator")
// et ainsi de suite...

{

: 9DaC

24

// anonymous
val dc

IN COMPARISON
val tztle

val creator =
}

new PrefixBuilder ("http://purl.org/dc/terms/")

apply("title™)

apply("creator")
// public

{
val title

object dc extends PrefixBuilder ("http://purl.org/dc/terms/")
apply("title")
val creator =

= apply("creator")

{

: 9DaC

25

ALSO IMPLEMENTED WITH A MACRO

class fromSchema (path: String) extends StaticAnnotation {
def macroTransform(annottees: Any¥*)
}

macro PrefixGenerator.impl

object PrefixGenerator {

def impl (c: Context) (annottees:
}

c.Expr[Any]*) =

Do 26

ADVANTAGES OF THE PUBLIC APPROACH

» Generated code is straightforward and interoperable
» Provides a lot of notational freedom

27

ADVANTAGES OF THE PUBLIC APPROACH

» Generated code is straightforward and interoperable
» Provides a lot of notational freedom

DISADVANTAGES

» Requires your users to depend on macro paradise

» Provides a lot of notational freedom

DA

27

SUMMARY

28

WE CAN GENERATE CODE FROM SCHEMAS

» Using def macros in vanilla Scala 2.10/2.11 (anonymous)

» Using macro annotations in macro paradise (public)

29

v

v

v

v

How PRACTICAL IS THIS? (LANGUAGE SUPPORT)
Macro annotations aren't shipped in Scala 2.11

No concrete plans to ship them in Scala 2.12

This means anonymous type providers are more stable

But they have important downsides, so it's a trade-off

Rl S = : 9DaC

30

v

v

v

v

How PRACTICAL IS THIS? (IDE SuPPORT)
Both anonymous and public type providers are whitebox
This means limited supported in Intellij and Eclipse
Also there's no easy way to look into macro expansions

Or to generate scaladocs for generated code

CIRT= =» «=» E 9AC

31

v

v

v

v

How PRACTICAL IS THIS? (IDE SuPPORT)
Both anonymous and public type providers are whitebox
This means limited supported in Intellij and Eclipse*
Also there's no easy way to look into macro expansions*

Or to generate scaladocs for generated code”

*this is something we are working on in Project Palladium

u]
o)
I

i
i
N)
p
Q

31

How PRACTICAL IS THIS? (TOOL SUPPORT)
» Build reproducibility is a solved problem

» Just don't go and talk to external data sources directly

» Use schemas that are fetched and versioned
independently

DA

32

COMPARISON WITH F#
» More raw power

» Limited IDE support

» Not yet part of the language standard

33

SUMMARY

» Macros enable principled compile-time code generation

» Can successfully implement type providers

» Better support is necessary for optimal experience

DA

34

RESOURCES

» Our example project: <http://goo.gl/pSTZMx>
» Type providers in Scala: <http://goo.gl/s8cPlw>

» Project Palladium: <http://scalareflect.org/>
OR AsK Us!
» @xeno_by <xeno.by@gmail.com>

» @travisbrown <travisrobertbrown@gmail.com>

THANKS!

