
Macro-based type providers in Scala

Eugene Burmako and Travis Brown

École Polytechnique Fédérale de Lausanne
University of Maryland, College Park

5 april 2014

What are type providers, anyway?

Compile-time metaprogramming facilities for
“information rich programming”

*

*to borrow a phrase from the F# community

2

What are type providers, anyway?

Compile-time metaprogramming facilities for
“information rich programming”

*

*to borrow a phrase from the F# community

2

What are type providers, anyway?

Compile-time metaprogramming facilities for
“information rich programming”*

*to borrow a phrase from the F# community

2

A type provider…

1 reads information from a data source

2 makes that information available to the program in types

3

Examples of information sources

I An XSD schema for XML

I A JSON-LD context

I AWeb Service Description Language file

I SQL table definitions and stored procedures

4

Motivation

I You’ve got schemas that describe your data

I You want to use these descriptions in your code

I You don’t want to repeat yourself!

5

Example: Schema bindings for RDF

@prefix dc: <http://purl.org/dc/terms/>.
@prefix dct: <http://purl.org/dc/dcmitype/>.
@prefix sga: <http://shelleygodwinarchive.org/>.
@prefix wiki: <https://en.wikipedia/wiki/>.

sga:ms-abinger-c57 a dct:Text.
sga:ms-abinger-c57 dc:title "Frankenstein Draft Notebook B"@en.
sga:ms-abinger-c57 dc:creator wiki:Mary_Shelley.

6

Example: Schema bindings for RDF

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dc: <http://purl.org/dc/terms/>.

dc:title a rdf:Property;
rdfs:comment "A name given to the resource."@en;
rdfs:isDefinedBy dcterms:;
rdfs:label "Title"@en;
rdfs:range rdfs:Literal.

dc:creator a rdf:Property;
and on and on...

7

Example: Schema bindings for RDF

val frankensteinNotebookB = (
URI("http://shelleygodwinarchive.org/ms-abinger-c57")

.a(dct.Text)
-- dc.title ->- "Frankenstein Draft Notebook B"
-- dc.creator ->- URI(
"https://en.wikipedia.org/wiki/Mary_Shelley"

)
)

8

Example: Schema bindings for RDF

Follow along with example code and documentation:

<https://github.com/travisbrown/type-provider-examples>

We’ll be using theW3C’s Banana RDF library throughout:

<https://github.com/w3c/banana-rdf>

9

Low-tech solutions

10

Defining schema bindings manually

object dc extends PrefixBuilder("http://purl.org/dc/terms/") {
val title = apply("title")
val creator = apply("creator")
// and on and on...

}

But we’re just repeating the RDF Schema we’ve seen above…

11

Defining schema bindings manually

object dc extends PrefixBuilder("http://purl.org/dc/terms/") {
val title = apply("title")
val creator = apply("creator")
// and on and on...

}

But we’re just repeating the RDF Schema we’ve seen above…

11

Defining schema bindings manually

I These vocabularies can be large (hundreds of terms)

I We’re just repeating information from the RDF Schema

I We don’t want to repeat ourselves!

12

Traditional solution: textual code generation

I Tied to a specific (often ad-hoc) build process

I Concatenating strings is unpleasant and error-prone

I Oblivious to semantics, e.g. dependencies between
modules of the program

I Hard to customize

I Easy to get out of sync

13

Implementing type providers

I In F#: special support is built into the compiler

I In Scala: we can use the general purpose macro system

…with Scala macros

I Anonymous type providers via def macros

I Public type providers via macro annotations

14

Implementing type providers

I In F#: special support is built into the compiler

I In Scala: we can use the general purpose macro system

…with Scala macros

I Anonymous type providers via def macros

I Public type providers via macro annotations

14

Anonymous type providers

15

In action

val dc = fromSchema("/dcterms.rdf")

That’s all!

16

In action

val dc = fromSchema("/dcterms.rdf")

That’s all!

16

How it works

I Parses the schema resource

at compile time

I Creates an instance of a structural type

I scalac figures out the rest

17

How it works

I Parses the schema resource at compile time

I Creates an instance of a structural type

I scalac figures out the rest

17

Generated code

val dc = new PrefixBuilder("http://purl.org/dc/terms/") {
val title = apply("title")
val creator = apply("creator")
// et cetera...

}

18

Implemented with a macro

object PrefixGenerator {
def fromSchema(path: String) = macro impl

def impl(c: Context)(path: c.Expr[String]) = ...
}

19

Advantages of the anonymous approach

I Familiar syntax—just a method call

I Works in official Scala 2.10 and 2.11

Disadvantages

I Structural types don’t work in Java

I Structural types involve reflective access in Scala

*

*but there’s a partial workaround—see the example project

20

Advantages of the anonymous approach

I Familiar syntax—just a method call

I Works in official Scala 2.10 and 2.11

Disadvantages

I Structural types don’t work in Java

I Structural types involve reflective access in Scala

*

*but there’s a partial workaround—see the example project

20

Advantages of the anonymous approach

I Familiar syntax—just a method call

I Works in official Scala 2.10 and 2.11

Disadvantages

I Structural types don’t work in Java

I Structural types involve reflective access in Scala*

*but there’s a partial workaround—see the example project

20

Public type providers

21

In action

@fromSchema("/dcterms.rdf") object dc extends PrefixBuilder

22

How it works

I Also parses the schema resource at compile-time

I Uses the provided object as a template

I Populates the object with generated members

23

Generated code

object dc extends PrefixBuilder("http://purl.org/dc/terms/") {
val title = apply("title")
val creator = apply("creator")
// et ainsi de suite...

}

24

In comparison

// anonymous
val dc = new PrefixBuilder("http://purl.org/dc/terms/") {

val title = apply("title")
val creator = apply("creator")

}

// public
object dc extends PrefixBuilder("http://purl.org/dc/terms/") {

val title = apply("title")
val creator = apply("creator")

}

25

Also implemented with a macro

class fromSchema(path: String) extends StaticAnnotation {
def macroTransform(annottees: Any*) = macro PrefixGenerator.impl

}

object PrefixGenerator {
def impl(c: Context)(annottees: c.Expr[Any]*) = ...

}

26

Advantages of the public approach

I Generated code is straightforward and interoperable

I Provides a lot of notational freedom

Disadvantages

I Requires your users to depend on macro paradise

I Provides a lot of notational freedom

27

Advantages of the public approach

I Generated code is straightforward and interoperable

I Provides a lot of notational freedom

Disadvantages

I Requires your users to depend on macro paradise

I Provides a lot of notational freedom

27

Summary

28

We can generate code from schemas

I Using def macros in vanilla Scala 2.10/2.11 (anonymous)

I Using macro annotations in macro paradise (public)

29

How practical is this? (Language support)

I Macro annotations aren’t shipped in Scala 2.11

I No concrete plans to ship them in Scala 2.12

I This means anonymous type providers are more stable

I But they have important downsides, so it’s a trade-off

30

How practical is this? (IDE support)

I Both anonymous and public type providers are whitebox

I This means limited supported in Intellij and Eclipse

*

I Also there’s no easy way to look into macro expansions

*

I Or to generate scaladocs for generated code

*

*this is something we are working on in Project Palladium

31

How practical is this? (IDE support)

I Both anonymous and public type providers are whitebox

I This means limited supported in Intellij and Eclipse*

I Also there’s no easy way to look into macro expansions*

I Or to generate scaladocs for generated code*

*this is something we are working on in Project Palladium

31

How practical is this? (Tool support)

I Build reproducibility is a solved problem

I Just don’t go and talk to external data sources directly

I Use schemas that are fetched and versioned
independently

32

Comparison with F#

I More raw power

I Limited IDE support

I Not yet part of the language standard

33

Summary

I Macros enable principled compile-time code generation

I Can successfully implement type providers

I Better support is necessary for optimal experience

34

Resources

I Our example project: <http://goo.gl/pSTZMx>

I Type providers in Scala: <http://goo.gl/s8cPlw>

I Project Palladium: <http://scalareflect.org/>

Or ask us!

I @xeno_by <xeno.by@gmail.com>

I @travisbrown <travisrobertbrown@gmail.com>

Thanks!

35

