
Rethinking Scala Macros

Work in progress, not available yet

Eugene Burmako

École Polytechnique Fédérale de Lausanne
http://scalamacros.org/

02 March 2014

This talk is superseded by the presentation delivered at ScalaDays 2014.
Links to slides/video of the ScalaDays talk live at scalameta.org.

http://scalameta.org/

Outline

▶ What is Palladium?

▶ Planned features

▶ Planned deliverables

▶ Final words

2

What is Palladium?

3

Project Palladium

▶ Successor of Project Kepler

▶ Goal of Project Kepler: bring macros to Scala

▶ Goal of Project Palladium: make macros in Scala easy to use

4

Scala macros: the good parts

▶ Enable cool use cases that were previously impossible/impractical

▶ Have a significant community of research and production users

▶ A lot of popular libraries in Scala ecosystem use macros

5

http://scalamacros.org/paperstalks/2014-02-04-WhatAreMacrosGoodFor.pdf

Scala macros: the bad parts

▶ Using macros is easy, developing macros is hard

▶ This contributes to the public image of metaprogramming

▶ Useful, but hacky and obscure

I’m very envious of Racket macros, because it’s very extensible.
But I don’t know how to do it for Haskell. TH is the nearest, but
it’s nowhere near.

—Simon Peyton Jones

6

Palladium goal #1: Being straightforward
coll.map(x => x + 1)

..

{

def fn(x: Int) = x + 1

val buf = Coll.newBuilder[T]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

}

▶ A canonical example that illustrates current problems with macros

▶ Currently possible, but prohibitively complex to get right

▶ To goal of Palladium is to make such macros writeable on autopilot

7

Palladium goal #2: Being portable

The trick is to make this work with:

▶ Scala compilers other than scalac

▶ Integrated development environments

▶ Incremental compilation

▶ Interactive documentation

▶ Runtime reflection

8

Summary

Palladium will make macros straightforward and portable

9

Planned features

10

Our running example
coll.map(x => x + 1)

..

{

def fn(x: Int) = x + 1

val buf = Coll.newBuilder[T]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

}

▶ Let’s take another look at Paul’s declosurify

▶ Possible but ridiculously hard at the moment

▶ How can Palladium help?

11

Disclaimer

▶ What follows is just a sketch, nothing’s implemented yet

▶ We might or might not be able to figure out everything

▶ But all in all, the plan seems reasonable enough

▶ After we have results, we’ll see how/when this can be part of Scala

12

Feature #1: Simple definitions
import scala.reflect._

import scala.language.macros

implicit class Mapper[Coll[_], A](coll: Coll[A]) {

macro map[B](fn: A => B): Coll[B] = {

val q"(..$ps) => $body" = fn

val newBuilder = t"Coll".companion.method("newBuilder")

q"""

def fn(..$ps) = $body

val buf = $newBuilder[$A]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

"""

}

}

▶ No longer necessary to split macro defs and macro impls

▶ No longer necessary to write tiresome c.Expr and c.WeakTypeTag
13

Feature #2: Simple reflection
import scala.reflect._

import scala.language.macros

implicit class Mapper[Coll[_], A](coll: Coll[A]) {

macro map[B](fn: A => B): Coll[B] = {

val q"(..$ps) => $body" = fn

val newBuilder = t"Coll".companion.method("newBuilder")

q"""

def fn(..$ps) = $body

val buf = $newBuilder[$A]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

"""

}

}

▶ Explicit macro context will be gone, along with path dependencies

▶ Redesigned reflection API that makes introspection and codegen easy
14

Feature #3: Simple trees
import scala.reflect._

import scala.language.macros

implicit class Mapper[Coll[_], A](coll: Coll[A]) {

macro map[B](fn: A => B): Coll[B] = {

val q"(..$ps) => $body" = fn

val newBuilder = t"Coll".companion.method("newBuilder")

q"""

def fn(..$ps) = $body

val buf = $newBuilder[$A]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

"""

}

}

▶ No more manual construction/deconstruction, reification, exprs

▶ Trees won’t carry types or symbols, but will be typecheckable
15

Feature #4: Simple types
import scala.reflect._

import scala.language.macros

implicit class Mapper[Coll[_], A](coll: Coll[A]) {

macro map[B](fn: A => B): Coll[B] = {

val q"(..$ps) => $body" = fn

val newBuilder = t"Coll".companion.method("newBuilder")

q"""

def fn(..$ps) = $body

val buf = $newBuilder[$A]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

"""

}

}

▶ Convenient notation to construct and deconstruct types

▶ No more tags, no more case TypeRef(...), no more appliedType

16

Feature #5: Simple symbols
import scala.reflect._

import scala.language.macros

implicit class Mapper[Coll[_], A](coll: Coll[A]) {

macro map[B](fn: A => B): Coll[B] = {

val q"(..$ps) => $body" = fn

val newBuilder = t"Coll".companion.method("newBuilder")

q"""

def fn(..$ps) = $body

val buf = $newBuilder[$A]

var i = 0

while (i < coll.length) { buf += fn(coll(i)); i += 1 }

buf.result

"""

}

}

▶ Symbols as we know them should be gone for good

▶ Introspection serviced by Members, bindings handled by hygiene
17

Feature #6: Inline expansion

▶ We can treat macro applications as folded regions of code

▶ When you press [+], a given macro application expands

▶ When you press [-], a given macro expansion collapses back

18

Feature #7: Expansion error highlighting

▶ Inline expansion will provide long-awaited interactivity

▶ For one, errors in macro expansions are going to make sense

▶ Have an error? Click [+] and see what exactly causes it!

19

Feature #8: Expansion error troubleshooting

▶ Quasiquotes can be smart, capturing locations they originate from

▶ That would enable tracking culprits of errors in generated code

▶ One could even imagine interactive fixes to codegen errors

20

Feature #9: Inline debugging

▶ The concept of interactive expansion is also applicable to debugging

▶ Once a macro is expanded, you will be able to set breakpoints in
expanded code

21

Feature #10: Incremental compilation

SBT will correctly handle macro expansions:

▶ No more whole project recompilations on a tiny change in a macro

▶ Changes to macro arguments will recompile expansions

▶ Changes to macro bodies and their helpers will recompile expansions

▶ Changes to types introspected by macros will recompile expansions

22

Summary

▶ Simple macro definitions

▶ Simple reflection API

▶ Interactive expansion

▶ Inline debugging

▶ Incremental compilation

23

Planned deliverables

24

M1

▶ Aims to deliver a demoable prototype of the Palladium macro system

▶ That works nicely with the existing ecosystem of tools

▶ And is reasonably compatible with existing popular macros

▶ By ScalaDays 2014 (16-18 June)

25

Component #1: New reflection API

▶ Reflection Core, a redesigned compile-time/runtime reflection library

▶ Interface shared between Scala, Dotty, Eclipse, Intellij, SBT, etc

▶ Specced and developed independently of implementors

26

Component #2: Hygienic quasiquotes

▶ Smart quasiquoting facility that respects hygiene and ref transparency

▶ Very much relies on getting trees right

▶ Denys will elaborate on that at Scala Days

27

Component #3: AST interpretation

▶ Macros will run in an interpreter, ensuring portability and compatibility

▶ NB! Here we only need to interpret typed ASTs, relying on the fact
that our host is going to provide a typechecking facility

▶ Having an AST interpreter is also useful beyond macro expansion

▶ For example, it will give us a nice, minimalistic REPL!

28

Component #4: AST persistence

▶ In order to interpret macros, we need to store their ASTs

▶ And not only their ASTs, but also ASTs of their dependencies

▶ Ramping this up, how about we store ASTs for everything?!

▶ AST persistence is also useful beyond macro expansion

29

Components #3+4: Runtime expansion

▶ AST interpretation and AST persistence work very well together

▶ Interpreted ASTs => we don’t need the compiler to run macros

▶ Persistent ASTs => we don’t need the compiler to setup environment

▶ As a result, we will be able to expand macros at runtime!!

30

Component #5: Tooling infrastructure (SBT)

▶ At the moment, SBT doesn’t know almost anything about macros

▶ A) If macro body changes, we’ve got to recompile, but we don’t

▶ B) If macro data changes, we’ve got to recompile, but we don’t

▶ With ASTs and interpretation traces, we can do so much better!

31

Component #5: Tooling infrastructure (IDE)

▶ Not much can be done if macros are just arbitrary functions

▶ However with interpretation we can easily control expansions

▶ The model of [+]/[-] buttons for macro applications

▶ Both for interactive editing and debugging

32

Summary

▶ Straightforward reflection API decoupled from compiler internals

▶ Hygienic quasiquotes which are essential for tree manipulations

▶ AST interpreter

▶ AST persistence

▶ Tooling infrastructure: incremental compilation and IDEs

33

Final words

34

Status

▶ Palladium was kicked off just two weeks ago

▶ Most of the team is from EPFL with several external contributors

▶ It is a research platform for new metaprogramming technologies

▶ Targetting Scala and Dotty

35

Feedback

▶ Your feedback and contributions are very much welcome

▶ Mailing list: palladium-internals @ groups.google.com

▶ Design documents: Palladium Shared @ docs.google.com

36

https://groups.google.com/forum/#!forum/palladium-internals
https://drive.google.com/?authuser=0#folders/0Bxbd8B9L-XfmcE9tRFBXVjZtY0k

Summary

▶ Palladium will make macros straightforward and portable

▶ New reflection + AST interpretation + AST persistence + tooling

▶ Welcome to the future of Scala macros!

37

