
Macros vs Types

Eugene Burmako & Lars Hupel

École Polytechnique Fédérale de Lausanne
Technische Universität München

March 1, 2014



Use’ing your Macro’s Good

Eugene Burmako & Lars Hupel

École Polytechnique Fédérale de Lausanne
Technische Universität München

March 1, 2014



Macros vs Types

▶ Types have been used to metaprogram Scala for ages
▶ Macros are the new player on the field
▶ Debates are hot in the IRC and on Twitter
▶ Time to figure out who’s the best once and for all!

3



Let the games begin!

Following the “What are macros good for?” talk, we will see how the
contenders fare in three disciplines:

▶ Code generation
▶ Static checks
▶ Domain-specific languages

4

http://scalamacros.org/paperstalks/2014-02-04-WhatAreMacrosGoodFor.pdf


Code generation

5



Code generation

Every language ecosystem has it

, even Haskell

▶ lens
derive lenses for fields of a data type

▶ yesod
templating, routing

▶ invertible-syntax
constructing partial isomorphisms for constructors

6



Code generation

Every language ecosystem has it, even Haskell

▶ lens
derive lenses for fields of a data type

▶ yesod
templating, routing

▶ invertible-syntax
constructing partial isomorphisms for constructors

6



Textual code generation
Example: Parser generators

7



Textual codegen is too low-tech

▶ Easy to mess up when concatenating strings
▶ Little knowledge about the program being compiled
▶ Needs to be hooked into the build process
▶ We need a better solution!

8



Enter types

▶ Scala’s type system is Turing-complete
▶ This enables some form of code generation
▶ But it’s not particularly straightforward

9



Enter macros

▶ Functions that are run at compile time
▶ Operate on abstract syntax trees not on strings
▶ Communicate with compiler to learn things about the program
▶ A lot of popular Scala libraries are already using macros

10



Use case: Spire Ops

This is a typical situation with high-level abstractions in Scala
There are a lot of ways to write pretty code...

import spire.algebra._
import spire.implicits._

def nice[A: Ring](x: A, y: A): A =
(x + y) * z

def desugared[A](x: A, y: A)(implicit ev: Ring[A]): A =
new RingOps(new RingOps(x)(ev).+(y))(ev).*(z) // slow!

def fast[A](x: A, y: A)(implicit ev: Ring[A]): A =
ev.times(ev.plus(x, y), z) // fast, but not pretty!

11



Use case: Spire Ops

But oftentimes pretty code is going to be slow, because of all the magic
flying around, like in this case of typeclass-based design

import spire.algebra._
import spire.implicits._

def nice[A: Ring](x: A, y: A): A =
(x + y) * z

def desugared[A](x: A, y: A)(implicit ev: Ring[A]): A =
new RingOps(new RingOps(x)(ev).+(y))(ev).*(z) // slow!

def fast[A](x: A, y: A)(implicit ev: Ring[A]): A =
ev.times(ev.plus(x, y), z) // fast, but not pretty!

11



Use case: Spire Ops

There usually exist alternatives that provide great performance, but often
they aren’t as good-looking as we’d like them to be

import spire.algebra._
import spire.implicits._

def nice[A: Ring](x: A, y: A): A =
(x + y) * z

def desugared[A](x: A, y: A)(implicit ev: Ring[A]): A =
new RingOps(new RingOps(x)(ev).+(y))(ev).*(z) // slow!

def fast[A](x: A, y: A)(implicit ev: Ring[A]): A =
ev.times(ev.plus(x, y), z) // fast, but not pretty!

11



Use case: Spire Ops

With macros you no longer have to choose – macros can transform pretty
solutions into fast code

import spire.algebra._
import spire.implicits._

def nice[A: Ring](x: A, y: A): A =
(x + y) * z

def desugared[A](x: A, y: A)(implicit ev: Ring[A]): A =
new RingOps(new RingOps(x)(ev).+(y))(ev).*(z) // slow!

def fast[A](x: A, y: A)(implicit ev: Ring[A]): A =
ev.times(ev.plus(x, y), z) // fast, but not pretty!

11



What are types bringing into the mix?

▶ Thanks to macros code generation becomes accessible and fun
▶ But: Macros are essentially opaque to humans
▶ We can and should try to alleviate this with types

12



Use case: Materialization

We want to have: default implementations for
▶ Semigroup (pointwise addition)
▶ Ordering (lexicographic order)
▶ Binary (pickling/unpickling)

We do not want to: write boilerplate
▶ Repetitive & error-prone

13



Use case: Materialization

scalac already synthesizes equals, toString ...

Problem
Not extensible

Solution
Materialization based on type classes and implicit macros

14



Use case: Materialization

scalac already synthesizes equals, toString ...

Problem
Not extensible

Solution
Materialization based on type classes and implicit macros

14



Use case: Materialization

scalac already synthesizes equals, toString ...

Problem
Not extensible

Solution
Materialization based on type classes and implicit macros

14



Type classes à la Scala

▶ Type classes are (first-class) traits
▶ Instances are (first-class) values

▶ Both can use arbitrary language features

15



Type classes à la Scala

▶ Type classes are (first-class) traits
▶ Instances are (first-class) values
▶ Both can use arbitrary language features

15



Use case: Materialization

implicit def derive[C[_] : TypeClass, T]: C[T] =
macro TypeClass.derive_impl[C, T]

16



The power of materialization

▶ First introduced in Shapeless
▶ Similar to deriving Eq in Haskell
▶ Extensible without modifying the macro(s) itself

17



The dangers of materialization

Bad

implicit def derive[C[_], T]: C[T] =
macro TypeClass.derive_impl[C, T]

Good

implicit def derive[C[_] : TypeClass, T]: C[T] =
macro TypeClass.derive_impl[C, T]

18



Our advice

▶ Macros are great, but are essentially opaque to humans
▶ Try to document the codegen surface using types
(type classes and other advanced techniques really help here!)

▶ Try to limit the codegen surface to just the “moving parts”
(maybe more boilerplate, but more predictable)

▶ We need best practices for documentation & testing

19



Static checks

20



Types à la Pierce

“A type system is a tractable syntactic method for
proving the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute.”

– Benjamin Pierce, in: Types and Programming Languages

21



Types à la Pierce

“A type system is a tractable syntactic method for
proving the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute.”

– Benjamin Pierce, in: Types and Programming Languages

21



Types à la Scala

Scala has a sophisticated type system
▶ Path-dependent types
▶ Type projections
▶ Higher-kinded types
▶ Implicit parameters

22



Type computations

Implicits allow computations in the type system

▶ Higher-order unification (SI-2712)
▶ Generic operations on tuples
▶ Extensible records
▶ Statically size-checked collections

23

https://issues.scala-lang.org/browse/SI-2712


Shapeless

The library that makes advanced types accessible!

24



Type computations
Example: Sized collections

// typed as Sized[_2, List[String]]
val hdrs = Sized(”Title”, ”Author”)

// typed as List[Sized[_2, List[String]]]
val rows = List(
Sized(”TAPL”, ”B. Pierce”),
Sized(”Implementation of FP Languages”, ”SPJ”)

)

25



The power of type computation

Computing with implicits is sometimes called “Poor Man’s Prolog”

But: Despite the “Poor Man’s” part, almost anything can be done

26



..



What are macros bringing into the mix?

▶ Complex type computations are hard to debug
(sometimes, -Xlog-implicits is not enough)

▶ Complex type computations often slow down the compiler
▶ Types don’t cover everything, sometimes we need more power

28



Let’s overthrow the tyranny of types!
Macros can do anything, including validation of arguments,
so we shouldn’t bother with all those complex types anymore

Bad

trait GenTraversableLike[+A, +Repr] {
def map[B, R](f: A => B)

(implicit bf: CanBuildFrom[Repr, B, R]): R
}

Good

trait GenTraversableLike {
def map(f: Any): Any = macro ...

}

29



Let’s overthrow the tyranny of types!
Macros can do anything, including validation of arguments,
so we shouldn’t bother with all those complex types anymore

Bad

trait GenTraversableLike[+A, +Repr] {
def map[B, R](f: A => B)

(implicit bf: CanBuildFrom[Repr, B, R]): R
}

Good

trait GenTraversableLike {
def map(f: Any): Any = macro ...

}

29



Let’s overthrow the tyranny of types!
Macros can do anything, including validation of arguments,
so we shouldn’t bother with all those complex types anymore

Bad

trait GenTraversableLike[+A, +Repr] {
def map[B, R](f: A => B)

(implicit bf: CanBuildFrom[Repr, B, R]): R
}

Good

trait GenTraversableLike {
def map(f: Any): Any = macro ...

}

29



Completely replacing types with macros: not a good idea
Macros can do anything, including validation of arguments,
so we shouldn’t bother with all those complex types anymore

Bad

trait GenTraversableLike[+A, +Repr] {
def map[B, R](f: A => B)

(implicit bf: CanBuildFrom[Repr, B, R]): R
}

Good

trait GenTraversableLike {
def map(f: Any): Any = macro ...

}

29



Reasonable use case: Checked arithmetics

Spire provides a checked macro to detect arithmetic overflows
Types can’t capture this, so it’s okay to use a macro here

// returns None when x + y overflows
Checked.option {
x + y < z

}

30



Reasonable use case: WartRemover

Brian McKenna has written a flexible Scala code linting tool
that can alert one about questionable coding practices

scala> def safe(expr: Any) = macro Unsafe.asMacro
safe: (expr: Any)Any

scala> safe { null }
<console>:10: error: null is disabled

safe { null }
^

31



Our advice

▶ For static checks use types whenever practical
▶ Macros if impossible or heavyweight
▶ Try to document and encapsulate the magic using types
(type classes are particularly nice for this purpose)

32



Domain-specific languages

33



Domain-specific languages

As per “DSLs in Action”:
▶ Embedded aka internal
▶ Standalone aka external
▶ Non-textual

34



Domain-specific languages

As per “DSLs in Action”:
▶ Embedded aka internal← in this talk
▶ Standalone aka external
▶ Non-textual

34



Use case: Slick
An embedded DSL for data access

Instead of writing database code in SQL

select c.NAME from COFFEES c where c.ID = 10

Write database code in Scala

for (c <- coffees if c.id == 10) yield c.name

35



Use case: Slick
An embedded DSL for data access

Instead of writing database code in SQL

select c.NAME from COFFEES c where c.ID = 10

Write database code in Scala

for (c <- coffees if c.id == 10) yield c.name

35



Three approaches

▶ Lifted embedding (types)
▶ Direct embedding (macros)
▶ Shadow embedding (macros + types)

36



Lifted embedding (types)
Types can do domain-specific validation and virtualization

Domain rules are encoded in an extra layer of types

object Coffees extends Table[(Int, String, ...)] {
def id = column[Int](”ID”, O.PrimaryKey)
def name = column[String](”NAME”)
...

}

37



Lifted embedding (types)
Types are quite heavyweight under the covers

What you write in a Slick DSL

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

)

What actually happens under the covers

Query(Coffees) filter
(c => c.id: Column[Int] === 10: Column[Int]) map
(c => c.name: Column[String])

38



Lifted embedding (types)
Types can be really bad at error messages

Trying to compile

Query(Coffees) map (c =>
if (c.origin === ”Iran”) ”Good”
else c.quality

)

Produces the following error

Don’t know how to unpack Any to T and pack to G
not enough arguments for method map: (implicit shape:
slick.lifted.Shape[Any,T,G]) slick.lifted.Query[G,T].
Unspecified value parameter

39



Direct embedding (macros)
Macros can also validate and virtualize Scala code

Type signatures are simple and error messages are to the point

case class Coffee(id: Int, name: String, ...)

Query[Coffee] filter
(c => c.id: Int == 10: Int) map
(c => c.name: String)

40



Direct embedding (macros)
Macros can do static checks, but sometimes that’s non-trivial to get right

Trying to use an unsupported feature

Query[Coffee] map (c => c.id.toDouble)

Crashes at runtime
This is what we get when we try to reinvent types

41



Direct embedding (macros)
Macros can do static checks, but sometimes that’s non-trivial to get right

Trying to use an unsupported feature

Query[Coffee] map (c => c.id.toDouble)

Crashes at runtime
This is what we get when we try to reinvent types

41



Shadow embedding (macros + types)
Based on YinYang, which uses macros and therefore enjoys all benefits of macros

Type signatures are simple and error messages are to the point

case class Coffee(id: Int, name: String, ...)

slick {
Query[Coffee] filter

(c => c.id: Int == 10: Int) map
(c => c.name: String)

}
}

42



Shadow embedding (macros + types)
Uses types to moderate APIs available inside DSL blocks

DSL author specifies the set of available APIs using types

// In Scala’s standard library (front-end)
final abstract class Int private extends AnyVal {
...
def toDouble: Double
...

}

// In Slick’s lifted embedding (back-end)
value toDouble is not a member of Column[Int]

43



Shadow embedding (macros + types)
The best of two worlds

Trying to do something unsupported

slick {
Query[Coffee] map

(c => c.id.toDouble)
}

Produces comprehensible and comprehensive errors

in Slick method toDouble is not a member of Int

44



Shadow embedding (macros + types)
An important limitation of the current macro system

Macros can’t see ASTs of everything in the program

def idIsTen(c: Coffee) = c.id == 10

slick {
Query[Coffee] filter idIsTen

}

45



Our advice

▶ Types work, but sometimes become too heavyweight
both for the DSL author and for the users

▶ With macros a lot of traditional ceremony is unnecessary,
and that makes DSL development faster and more productive

▶ But: Macros currently have inherent problems with modularity
(we’re working on this)

▶ If you decide to go with macros, always try to document and
encapsulate macro magic with types as much as possible

46



Summary

47



Types are more declarative, but less powerful

48



Macros are more powerful, but less declarative

49



Embrace reason, use whatever’s simpler

50



Also try combining strong points of both

51



Credits

▶ Erik Osheim for the Spire article at typelevel
▶ Amir Shaikhha for the shadow embedding thesis
▶ Vojin Jovanovic and Stefan Zeiger for DSL help
▶ Denys Shabalin and others for their comments
▶ Tom Niemann for the parser generators diagram
▶ Flickr for the Hanoi towers picture
▶ wallpapersus.com for the magnet picture
▶ Wikimedia Commons for the nuclear explosion picture
▶ Flickr for the fusion reactor picture
▶ Star Trek for the picture of Spock

52

http://typelevel.org/blog/2013/10/13/spires-ops-macros.html
https://github.com/amirsh/master-thesis
https://github.com/vjovanov/yin-yang
https://github.com/szeiger
https://github.com/densh
http://epaperpress.com/
https://secure.flickr.com/photos/mszeto/3261725397
http://da.wallpapersus.com/magnetic-field/
https://upload.wikimedia.org/wikipedia/commons/7/79/Operation_Upshot-Knothole_-_Badger_001.jpg
http://newsicare.wordpress.com/2010/07/14/building-the-open-source-bussard-fusion-reactor
http://en.wikipedia.org/wiki/Star_Trek

	Code generation
	Static checks
	Domain-specific languages
	Summary

