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Macros vs Types

▶ Types have been used to metaprogram Scala for ages
▶ Macros are the new player on the field
▶ Debates are hot in the IRC and on Twitter
▶ Time to figure out who’s the best once and for all!
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Let the games begin!

Following the “What are macros good for?” talk, we will see how the
contenders fare in three disciplines:

▶ Code generation
▶ Static checks
▶ Domain-specific languages
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http://scalamacros.org/paperstalks/2014-02-04-WhatAreMacrosGoodFor.pdf


Code generation
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Code generation

Every language ecosystem has it

, even Haskell

▶ lens
derive lenses for fields of a data type

▶ yesod
templating, routing

▶ invertible-syntax
constructing partial isomorphisms for constructors
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Textual code generation
Example: Parser generators
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Textual codegen is too low-tech

▶ Easy to mess up when concatenating strings
▶ Little knowledge about the program being compiled
▶ Needs to be hooked into the build process
▶ We need a better solution!
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Enter types

▶ Scala’s type system is Turing-complete
▶ This enables some form of code generation
▶ But it’s not particularly straightforward
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Enter macros

▶ Functions that are run at compile time
▶ Operate on abstract syntax trees not on strings
▶ Communicate with compiler to learn things about the program
▶ A lot of popular Scala libraries are already using macros
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Use case: Spire Ops

This is a typical situation with high-level abstractions in Scala
There are a lot of ways to write pretty code...

import spire.algebra._
import spire.implicits._

def nice[A: Ring](x: A, y: A): A =
(x + y) * z

def desugared[A](x: A, y: A)(implicit ev: Ring[A]): A =
new RingOps(new RingOps(x)(ev).+(y))(ev).*(z) // slow!

def fast[A](x: A, y: A)(implicit ev: Ring[A]): A =
ev.times(ev.plus(x, y), z) // fast, but not pretty!
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Use case: Spire Ops

But oftentimes pretty code is going to be slow, because of all the magic
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Use case: Spire Ops

There usually exist alternatives that provide great performance, but often
they aren’t as good-looking as we’d like them to be
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Use case: Spire Ops

With macros you no longer have to choose – macros can transform pretty
solutions into fast code

import spire.algebra._
import spire.implicits._

def nice[A: Ring](x: A, y: A): A =
(x + y) * z

def desugared[A](x: A, y: A)(implicit ev: Ring[A]): A =
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ev.times(ev.plus(x, y), z) // fast, but not pretty!
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What are types bringing into the mix?

▶ Thanks to macros code generation becomes accessible and fun
▶ But: Macros are essentially opaque to humans
▶ We can and should try to alleviate this with types
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Use case: Materialization

We want to have: default implementations for
▶ Semigroup (pointwise addition)
▶ Ordering (lexicographic order)
▶ Binary (pickling/unpickling)

We do not want to: write boilerplate
▶ Repetitive & error-prone
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Use case: Materialization

scalac already synthesizes equals, toString ...

Problem
Not extensible

Solution
Materialization based on type classes and implicit macros
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Type classes à la Scala

▶ Type classes are (first-class) traits
▶ Instances are (first-class) values

▶ Both can use arbitrary language features
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Use case: Materialization

implicit def derive[C[_] : TypeClass, T]: C[T] =
macro TypeClass.derive_impl[C, T]
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The power of materialization

▶ First introduced in Shapeless
▶ Similar to deriving Eq in Haskell
▶ Extensible without modifying the macro(s) itself
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The dangers of materialization

Bad

implicit def derive[C[_], T]: C[T] =
macro TypeClass.derive_impl[C, T]

Good

implicit def derive[C[_] : TypeClass, T]: C[T] =
macro TypeClass.derive_impl[C, T]
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Our advice

▶ Macros are great, but are essentially opaque to humans
▶ Try to document the codegen surface using types
(type classes and other advanced techniques really help here!)

▶ Try to limit the codegen surface to just the “moving parts”
(maybe more boilerplate, but more predictable)

▶ We need best practices for documentation & testing
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Static checks
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Types à la Pierce

“A type system is a tractable syntactic method for
proving the absence of certain program behaviors by classifying
phrases according to the kinds of values they compute.”

– Benjamin Pierce, in: Types and Programming Languages
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Types à la Scala

Scala has a sophisticated type system
▶ Path-dependent types
▶ Type projections
▶ Higher-kinded types
▶ Implicit parameters
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Type computations

Implicits allow computations in the type system

▶ Higher-order unification (SI-2712)
▶ Generic operations on tuples
▶ Extensible records
▶ Statically size-checked collections
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https://issues.scala-lang.org/browse/SI-2712


Shapeless

The library that makes advanced types accessible!
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Type computations
Example: Sized collections

// typed as Sized[_2, List[String]]
val hdrs = Sized(”Title”, ”Author”)

// typed as List[Sized[_2, List[String]]]
val rows = List(
Sized(”TAPL”, ”B. Pierce”),
Sized(”Implementation of FP Languages”, ”SPJ”)

)
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The power of type computation

Computing with implicits is sometimes called “Poor Man’s Prolog”

But: Despite the “Poor Man’s” part, almost anything can be done
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What are macros bringing into the mix?

▶ Complex type computations are hard to debug
(sometimes, -Xlog-implicits is not enough)

▶ Complex type computations often slow down the compiler
▶ Types don’t cover everything, sometimes we need more power
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Let’s overthrow the tyranny of types!
Macros can do anything, including validation of arguments,
so we shouldn’t bother with all those complex types anymore

Bad

trait GenTraversableLike[+A, +Repr] {
def map[B, R](f: A => B)

(implicit bf: CanBuildFrom[Repr, B, R]): R
}

Good

trait GenTraversableLike {
def map(f: Any): Any = macro ...

}
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Completely replacing types with macros: not a good idea
Macros can do anything, including validation of arguments,
so we shouldn’t bother with all those complex types anymore

Bad

trait GenTraversableLike[+A, +Repr] {
def map[B, R](f: A => B)

(implicit bf: CanBuildFrom[Repr, B, R]): R
}

Good

trait GenTraversableLike {
def map(f: Any): Any = macro ...

}
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Reasonable use case: Checked arithmetics

Spire provides a checked macro to detect arithmetic overflows
Types can’t capture this, so it’s okay to use a macro here

// returns None when x + y overflows
Checked.option {
x + y < z

}
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Reasonable use case: WartRemover

Brian McKenna has written a flexible Scala code linting tool
that can alert one about questionable coding practices

scala> def safe(expr: Any) = macro Unsafe.asMacro
safe: (expr: Any)Any

scala> safe { null }
<console>:10: error: null is disabled

safe { null }
^
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Our advice

▶ For static checks use types whenever practical
▶ Macros if impossible or heavyweight
▶ Try to document and encapsulate the magic using types
(type classes are particularly nice for this purpose)
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Domain-specific languages
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Domain-specific languages

As per “DSLs in Action”:
▶ Embedded aka internal
▶ Standalone aka external
▶ Non-textual
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Use case: Slick
An embedded DSL for data access

Instead of writing database code in SQL

select c.NAME from COFFEES c where c.ID = 10

Write database code in Scala

for (c <- coffees if c.id == 10) yield c.name
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Three approaches

▶ Lifted embedding (types)
▶ Direct embedding (macros)
▶ Shadow embedding (macros + types)
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Lifted embedding (types)
Types can do domain-specific validation and virtualization

Domain rules are encoded in an extra layer of types

object Coffees extends Table[(Int, String, ...)] {
def id = column[Int](”ID”, O.PrimaryKey)
def name = column[String](”NAME”)
...

}
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Lifted embedding (types)
Types are quite heavyweight under the covers

What you write in a Slick DSL

Query(Coffees) filter
(c => c.id === 10) map
(c => c.name)

)

What actually happens under the covers

Query(Coffees) filter
(c => c.id: Column[Int] === 10: Column[Int]) map
(c => c.name: Column[String])
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Lifted embedding (types)
Types can be really bad at error messages

Trying to compile

Query(Coffees) map (c =>
if (c.origin === ”Iran”) ”Good”
else c.quality

)

Produces the following error

Don’t know how to unpack Any to T and pack to G
not enough arguments for method map: (implicit shape:
slick.lifted.Shape[Any,T,G]) slick.lifted.Query[G,T].
Unspecified value parameter
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Direct embedding (macros)
Macros can also validate and virtualize Scala code

Type signatures are simple and error messages are to the point

case class Coffee(id: Int, name: String, ...)

Query[Coffee] filter
(c => c.id: Int == 10: Int) map
(c => c.name: String)
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Direct embedding (macros)
Macros can do static checks, but sometimes that’s non-trivial to get right

Trying to use an unsupported feature

Query[Coffee] map (c => c.id.toDouble)

Crashes at runtime
This is what we get when we try to reinvent types
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Shadow embedding (macros + types)
Based on YinYang, which uses macros and therefore enjoys all benefits of macros

Type signatures are simple and error messages are to the point

case class Coffee(id: Int, name: String, ...)

slick {
Query[Coffee] filter

(c => c.id: Int == 10: Int) map
(c => c.name: String)

}
}
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Shadow embedding (macros + types)
Uses types to moderate APIs available inside DSL blocks

DSL author specifies the set of available APIs using types

// In Scala’s standard library (front-end)
final abstract class Int private extends AnyVal {
...
def toDouble: Double
...

}

// In Slick’s lifted embedding (back-end)
value toDouble is not a member of Column[Int]
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Shadow embedding (macros + types)
The best of two worlds

Trying to do something unsupported

slick {
Query[Coffee] map

(c => c.id.toDouble)
}

Produces comprehensible and comprehensive errors

in Slick method toDouble is not a member of Int
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Shadow embedding (macros + types)
An important limitation of the current macro system

Macros can’t see ASTs of everything in the program

def idIsTen(c: Coffee) = c.id == 10

slick {
Query[Coffee] filter idIsTen

}
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Our advice

▶ Types work, but sometimes become too heavyweight
both for the DSL author and for the users

▶ With macros a lot of traditional ceremony is unnecessary,
and that makes DSL development faster and more productive

▶ But: Macros currently have inherent problems with modularity
(we’re working on this)

▶ If you decide to go with macros, always try to document and
encapsulate macro magic with types as much as possible
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Summary
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Types are more declarative, but less powerful
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Macros are more powerful, but less declarative
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Embrace reason, use whatever’s simpler
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Also try combining strong points of both
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Credits

▶ Erik Osheim for the Spire article at typelevel
▶ Amir Shaikhha for the shadow embedding thesis
▶ Vojin Jovanovic and Stefan Zeiger for DSL help
▶ Denys Shabalin and others for their comments
▶ Tom Niemann for the parser generators diagram
▶ Flickr for the Hanoi towers picture
▶ wallpapersus.com for the magnet picture
▶ Wikimedia Commons for the nuclear explosion picture
▶ Flickr for the fusion reactor picture
▶ Star Trek for the picture of Spock
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