
What Are Macros Good For?

Eugene Burmako

École Polytechnique Fédérale de Lausanne
http://scalamacros.org/

04 February 2014

What are macros?

▶ An experimental feature of 2.10 and 2.11

▶ You write functions against the reflection API

▶ Compiler invokes them during compilation

2

Macro flavors

▶ Many ways to hook into the compiler → many macro flavors

▶ Type macros, annotation macros, untyped macros, etc

▶ However in 2.10 and 2.11 there are only def macros

3

Def macros

log("does not compute")

..

if (Logger.enabled)

Logger.log("does not compute")

▶ Def macros replace well-typed terms with other well-typed terms

▶ Generated code can contain arbitrary Scala constructs

▶ Code generation can involve arbitrary computations

4

Def macros

def log(msg: String): Unit = ...

▶ Macro signatures look like signatures of normal methods

5

Def macros

def log(msg: String): Unit = macro impl

def impl(c: Context)(msg: c.Expr[String]): c.Expr[Unit] = ...

▶ Macro signatures look like signatures of normal methods

▶ Macro bodies are just stubs, referring macro impls defined outside

6

Def macros

def log(msg: String): Unit = macro impl

def impl(c: Context)(msg: c.Expr[String]): c.Expr[Unit] = {

import c.universe._

}

▶ Macro signatures look like signatures of normal methods

▶ Macro bodies are just stubs, referring macro impls defined outside

▶ Implementations use reflection API to analyze and generate code

7

Def macros

def log(msg: String): Unit = macro impl

def impl(c: Context)(msg: c.Expr[String]): c.Expr[Unit] = {

import c.universe._

q"""

if (Logger.enabled)

Logger.log($msg)

"""

}

▶ Macro signatures look like signatures of normal methods

▶ Macro bodies are just stubs, referring macro impls defined outside

▶ Implementations use reflection API to analyze and generate code

8

Quasiquotes

q"""

if (Logger.enabled)

Logger.log($msg)

"""

▶ q"..." string interpolators that build code are called quasiquotes

▶ They are very convenient to create and pattern match code snippets

▶ In 2.10 quasiquotes are available via the macro paradise plugin

▶ In 2.11 quasiquotes are available in the standard Scala distribution

9

http://docs.scala-lang.org/overviews/macros/paradise.html

Summary

log("does not compute")

..

if (Logger.enabled)

Logger.log("does not compute")

▶ Local expansion of method calls

▶ Well-formed and well-typed arguments

▶ Now what is this good for?

10

Code generation

11

Code generation

▶ Create terms and types on-the-fly

▶ More convenient and robust than textual codegen

12

Example #1 - Term generation

def createArray[T: ClassTag](size: Int, el: T) = {

val a = new Array[T](size)

for (i <- 0 until size) a(i) = el

a

}

▶ We want to write beautiful generic code, and Scala makes that easy

▶ Unfortunately, abstractions oftentimes bring overhead

▶ E.g. in this case erasure will cause boxing leading to a slowdown

13

Example #1 - Term generation

def createArray[@specialized T: ClassTag](...) = {

val a = new Array[T](size)

for (i <- 0 until size) a(i) = el

a

}

▶ Methods can be @specialized, but it’s viral and heavyweight

▶ Viral = the entire call chain needs to be specialized

▶ Heavyweight = specialization leads to duplication of bytecode

14

Example #1 - Term generation

def createArray[T: ClassTag](size: Int, el: T) = {

val a = new Array[T](size)

def specBody[@specialized T](el: T) {

for (i <- 0 until size) a(i) = el

}

classTag[T] match {

case ClassTag.Int => specBody(el.asInstanceOf[Int])

...

}

a

}

▶ We want to specialize just as much as we need

▶ As described in the recent Bridging Islands of Specialized Code paper

▶ But that’s tiresome to do by hand, and this is where macros shine

15

http://lampwww.epfl.ch/~hmiller/scala2013/resources/pdfs/paper10.pdf

Example #1 - Term generation

def specialized[T: ClassTag](code: => Any) = macro ...

def createArray[T: ClassTag](size: Int, el: T) = {

val a = new Array[T](size)

specialized[T] {

for (i <- 0 until size) a(i) = el

}

a

}

▶ specialized macro gets pretty code and transforms it into fast code

▶ This is a typical scenario of using macros for performance

▶ Also see the talk on Macro-Based Scala Parallel Collections

16

http://skillsmatter.com/podcast/scala/macro-based-scala-parallel-collections

Example #2 - Type generation

println(Db.Coffees.all)

Db.Coffees.insert("Brazilian", 99, 0)

▶ In F# one can generate wrappers over datasources

▶ These wrappers can then be used in a strongly-typed manner

▶ Can this be implemented with def macros?

17

Example #2 - Type generation

def h2db(connString: String): Any = macro ...

val db = h2db("jdbc:h2:coffees.h2.db")

..

val db = {

trait Db {

case class Coffee(...)

val Coffees: Table[Coffee] = ...

}

new Db {}

}

▶ Def macros expand locally, therefore we get a bunch of local classes

▶ Locals are invisible from the outside, so it’s a game over? Nope!

18

Example #2 - Type generation

scala> val db = h2db("jdbc:h2:coffees.h2.db")

db: AnyRef {

type Coffee { val name: String; val price: Int; ... }

val Coffees: Table[this.Coffee]

} = $anon$1...

scala> db.Coffees.all

res1: List[Db$1.this.Coffee] = List(Coffee(Brazilian,99,0))

▶ Scala can figure out and expose local signatures to the outer world

▶ Used by Specs2 to automatically create matchers for custom classes

19

Example #2 - Type generation

scala> val db = h2db("jdbc:h2:coffees.h2.db")

db: { type Coffee { ... }; val Coffees: List[this.Coffee]; }

▶ This is a fun technique stretching the boundaries of macrology

▶ There are some caveats, so it should be used with caution

▶ Alternatively you could use macro annotations available in 2.10 and
2.11 via the macro paradise plugin

20

http://docs.scala-lang.org/overviews/macros/typeproviders.html

Example #3 - Materialization

trait Reads[T] {

def reads(json: JsValue): JsResult[T]

}

object Json {

def fromJson[T](json: JsValue)

(implicit fjs: Reads[T]): JsResult[T]

}

▶ Type classes are an idiomatic way of writing extensible code in Scala

▶ This is an example of typeclass-based design in Play

21

Example #3 - Materialization

def fromJson[T](json: JsValue)

(implicit fjs: Reads[T]): JsResult[T]

implicit val IntReads = new Reads[Int] {

def reads(json: JsValue): JsResult[T] = ...

}

fromJson[Int](json) // you write

fromJson[Int](json)(IntReads) // you get

▶ With type classes we externalize the moving parts

▶ Instances of type classes are provided once

▶ And then scalac fills them in automatically

22

Example #3 - Before macros

case class Person(name: String, age: Int)

implicit val personReads = (

(__ \ ’name).reads[String] and

(__ \ ’age).reads[Int]

)(Person)

▶ Everything is done manually, hence boilerplate

▶ There are alternatives, e.g. one presented at the Scala’13 workshop

▶ But each of them has its downsides

23

https://speakerdeck.com/larsrh/generating-type-class-instances-automatically

Example #3 - Vanilla macros (2.10.0)

implicit val personReads = Json.reads[Person]

▶ Boilerplate can be generated by a macro

▶ The code ends up being the same as if it were written manually

▶ Therefore performance remains excellent

24

Example #3 - Implicit macros (2.10.2+)

// no code necessary

▶ Implicit values can be transparently generated by implicit macros

▶ Used with success in pickling and shapeless

25

Example #3 - Implicit macros (2.10.2+)

trait Reads[T] { def reads(json: JsValue): JsResult[T] }

object Reads {

implicit def materializeReads[T]: Reads[T] = macro ...

}

▶ When scalac looks for implicits, it traverses the implicit scope

▶ Implicit scope transcends lexical scope

▶ Among others it includes members of the targets companion

26

Example #3 - Implicit macros (2.10.2+)

fromJson[Person](json)

..

fromJson[Person](json)(materializeReads[Person])

..

fromJson[Person](json)(new Reads[Person]{ ... })

▶ Every time a Reads[T] isn’t found, the compiler will call our macro

▶ Details on how this works can be found in our documentation

27

http://docs.scala-lang.org/overviews/macros/implicits.html

Static checks

28

Static checks

▶ Check your program during compilation

▶ Report errors and warnings as you go

29

Example #4 - Advanced type signatures

trait Request

case class Command(msg: String) extends Request

trait Reply

case object CommandSuccess extends Reply

case class CommandFailure(msg: String) extends Reply

val actor = someActor

actor ! Command

▶ Akka actors are dynamically typed, i.e. the ! method takes Any

▶ This loosens type guarantees provided by Scala

▶ E.g. here we have a sneaky type error that leads to a runtime crash

30

Example #4 - Advanced type signatures

trait Request

case class Command(msg: String) extends Request

trait Reply

case object CommandSuccess extends Reply

case class CommandFailure(msg: String) extends Reply

type Spec = (Request, Reply) :+: TNil

val actor = new ChannelRef[Spec](someActor)

actor <-!- Command // doesn’t compile

▶ We can implement type specification for actors even in standard Scala

▶ But this became practical only when we got macros

▶ Akka typed channels are specifically designed to make use of macros

31

Example #4 - Advanced type signatures

type Spec = (Request, Reply) :+: TNil

val actor = new ChannelRef[Spec](someActor)

actor <-!- Command // doesn’t compile

▶ The <-!- macro takes the type of its target and extracts the spec

▶ Then it takes the argument type and validates it against the spec

▶ If necessary, the macro produces precise and clear compilation errors

32

Example #4 - Advanced type signatures

type Spec = (Request, Reply) :+: TNil

val actor = new ChannelRef[Spec](someActor)

actor <-!- Command // doesn’t compile

▶ This all can be done with implicits and type-level computations

▶ But that’s non-trivial both for the library authors and for the users

▶ Macros aren’t ideal either, and we plan to further research this

33

Example #5 - Advanced static checks

def future[T](body: => T) = ...

def receive = {

case Request(data) =>

future {

val result = transform(data)

sender ! Response(result)

}

}

▶ Capturing sender in the above closure is dangerous

▶ That’s because sender is not a value, but a stateful method

▶ To validate captures we can use macros: SIP-21 – Spores

34

http://docs.scala-lang.org/sips/pending/spores.html

Example #5 - Advanced static checks

def future[T](body: Spore[T]) = ...

def spore[T](body: => T): Spore[T] = macro ...

def receive = {

case Request(data) =>

future(spore {

val result = transform(data)

sender ! Response(result) // doesn’t compile

})

}

▶ The spore macro takes its body and figures out all free variables

▶ If any of the free variables are deemed dangerous, an error is reported

35

Example #5 - Advanced static checks

def future[T](body: Spore[T]) = ...

implicit def anyToSpore[T](body: => T): Spore[T] = macro ...

def receive = {

case Request(data) =>

future {

val result = transform(data)

sender ! Response(result) // doesn’t compile

}

}

▶ The conversion to Spore can be made implicit

▶ That will verify closures without bothering the user

36

Domain-specific languages

37

Domain-specific languages

▶ Take a program written in an internal or external DSL

▶ Work with it as with a domain-specific data structure

38

Example #6 - Language virtualization

val usersMatching = query[String, (Int, String)](

"select id, name from users where name = ?")

usersMatching("John")

▶ Database queries can be written in SQL

39

Example #6 - Language virtualization

val usersMatching = query[String, (Int, String)](

"select id, name from users where name = ?")

usersMatching("John")

case class User(id: Column[Int], name: Column[String])

users.filter(_.name === "John")

▶ Database queries can be written in SQL

▶ They can also be written in a DSL, at times slightly awkward

40

Example #6 - Language virtualization

val usersMatching = query[String, (Int, String)](

"select id, name from users where name = ?")

usersMatching("John")

case class User(id: Column[Int], name: Column[String])

users.filter(_.name === "John")

case class User(id: Int, name: String)

users.filter(_.name == "John")

▶ Database queries can be written in SQL

▶ They can also be written in a DSL, at times slightly awkward

▶ Or they can be written in Scala and virtualized by a macro

41

Example #6 - Language virtualization

trait Query[T] {

def filter(p: T => Boolean): Query[T] = macro ...

}

val users: Query[User] = ...

users.filter(_.name == "John")

..

Query(Filter(users, Equals(Ref("name"), Literal("John"))))

▶ The filter macro takes an AST corresponding to the predicate

▶ This AST is then analyzed and transformed into a query fragment

▶ Now we have a deeply embedded DSL, just like in LINQ and Slick

42

Example #7 - Internal DSLs

val futureDOY: Future[Response] =

WS.url("http://api.day-of-year/today").get

val futureDaysLeft: Future[Response] =

WS.url("http://api.days-left/today").get

futureDOY.flatMap { doyResponse =>

val dayOfYear = doyResponse.body

futureDaysLeft.map { daysLeftResponse =>

val daysLeft = daysLeftResponse.body

Ok(s"$dayOfYear: $daysLeft days left!")

}

}

▶ Turning a synchronous program into an async one isn’t easy

▶ One has to manually manage callbacks, introduce temps, etc

43

Example #7 - Internal DSLs

def async[T](body: => T): Future[T] = macro ...

def await[T](future: Future[T]): T = macro ...

async {

val dayOfYear = await(futureDOY).body

val daysLeft = await(futureDaysLeft).body

Ok(s"$dayOfYear: $daysLeft days left!")

}

▶ Turning a synchronous program into an async one isn’t easy

▶ Macros can do the transformation automatically: SIP-22 – Async

▶ Similar to C#’s async/await and parts of Clojure’s core/async

44

http://docs.scala-lang.org/sips/pending/async.html

Example #7 - Internal DSLs

def async[T](body: => T): Future[T] = macro ...

def await[T](future: Future[T]): T = macro ...

▶ At the heart of macro-based DSLs is the ability to analyze code

▶ The async macro sees detailed inner structure of code representing
its argument and can transform that structure to its liking

▶ Also see today’s talk JScala - Write Your JavaScript In Scala

45

http://skillsmatter.com/podcast/scala/jscala-write-your-javascript-in-scala

Example #8 - External DSLs

scala> val x = "42"

x: String = 42

scala> "%d".format(x)

j.u.IllegalFormatConversionException: d != java.lang.String

at java.util.Formatter$FormatSpecifier.failConversion...

▶ Strings are typically perceived to be unsafe

46

Example #8 - External DSLs

scala> val x = "42"

x: String = 42

scala> "%d".format(x)

j.u.IllegalFormatConversionException: d != java.lang.String

at java.util.Formatter$FormatSpecifier.failConversion...

scala> f"$x%d"

<console>:31: error: type mismatch;

found : String

required: Int

▶ Strings are typically perceived to be unsafe

▶ Though with macros they don’t have to be

47

Example #8 - External DSLs

implicit class Formatter(c: StringContext) {

def f(args: Any*): String = macro ???

}

val x = "42"

f"$x%d" // rewritten into: StringContext("", "%d").f(x)

▶ String interpolation desugars custom string literals into method calls

▶ These methods can be macros that validate strings at compile-time

48

Example #8 - External DSLs

val x = "42"

f"$x%d" // rewritten into: StringContext("", "%d").f(x)

..

{

val arg$1: Int = x // doesn’t compile

"%d".format(arg$1)

}

▶ Here the f macro just inserts type ascriptions in strategic places

▶ But this approach can be used to embed much more complex DSLs

▶ This means static validation, typechecking and maybe even interop

49

Summary

50

What are macros good for?

▶ Code generation

▶ Static checks

▶ Domain-specific languages

51

