View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Scala Macros: Let Our Powers Combine!

On How Rich Syntax and Static Types Work with Metaprogramming

Eugene Burmako

EPFL, Switzerland
eugene.burmako@epfl.ch

Abstract

Compile-time metaprogramming has been proven immensely
useful enabling programming techniques such as language
virtualization, embedding of external DSLs, self-optimization,
and boilerplate generation amongst many others.

In the recent production release of Scala 2.10 we have
introduced macros, an experimental facility which gives its
users compile-time metaprogramming powers. Alongside of
the mainline release of Scala Macros, we have also intro-
duced other macro flavors, which provide their users with
different interfaces and capabilities for interacting with the
Scala compiler.

In this paper, we show how the rich syntax and static
types of Scala synergize with macros, through a number
of real case studies using our macros (some of which are
production systems) such as language virtualization, type
providers, materialization of type class instances, type-level
programming, and embedding of external DSLs. We explore
how macros enable new and unique ways to use pre-existing
language features such as implicits, dynamics, annotations,
string interpolation and others, showing along the way how
these synergies open up new ways of dealing with software
development challenges.

1. Introduction

Compile-time metaprogramming can be thought of as the al-
gorithmic construction of programs at compile-time. It’s of-
ten used with the intent of allowing programmers to gener-
ate parts of their programs rather than having to write these
program portions themselves. Thus, metaprograms are pro-
grams who have a knowledge of other programs, and which
can manipulate them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SCALA ’13 July 2, Montpellier, France.

Copyright © 2013 Eugene Burmako. Publication rights licensed to ACM.

ACM 978-1-4503-2064-1/13/07
http://dx.doi.org/10.1145/2489837.2489840...$15.00

Across languages and paradigms, this sort of metapro-
gramming has been proven immensely useful, acting as an
enabling force behind a number of programming techniques,
such as: language virtualization (overloading/overriding se-
mantics of the original programming language) [11], em-
bedding of external domain-specific languages (tight inte-
gration of external DSLs into the host language) [39, 47],
self-optimization (self-application of optimizations based on
analysis of the program’s own code) [34], and boilerplate
generation (automatizing repetitive patterns which cannot be
readily abstracted away by the underlying language) [29, 35].

In the recent production release of Scala 2.10 we have
introduced Scala Macros [S] as a new experimental lan-
guage feature— Scala’s realization of compile-time metapro-
gramming. This new feature enables the compiler to recog-
nize certain methods in Scala programs as metaprograms, or
macros, which are then themselves invoked at certain points
of compilation. When invoked, macros are provided with a
compiler context, which exposes the compiler’s representa-
tion of the program being compiled along with an API pro-
viding certain compiler functionality such as parsing, type-
checking and error reporting. Using the API available in the
context, macros can influence compilation by, for example,
changing the code being compiled or affecting type inference
performed by the typechecker.

The most basic form of compile-time metaprogramming
in our system is achieved by def macros, plain methods
whose invocations are expanded during compilation. In ad-
dition to these def macros, we have identified, implemented,
and experimented with different macro flavors: dynamic
macros, string interpolation, implicit macros, type macros,
and macro annotations. Each of which encompasses some
different way in which macros are presented to, and can be
used by users. We will go on to explore a number of applica-
tions, which have proven markedly difficult or impossible to
achieve via other means, each of which exercise one of these
macro flavors.

Our contributions are as follows:

* The design and implementation of a number of macro fla-
vors, which are integrated in a principled way alongside
of Scala’s rich syntax and strong static type system.

https://core.ac.uk/display/147995969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

* A comprehensive validation of the utility of these macro
flavors through a number of real case studies. We show
that macros (a) enable language virtualization, (b) can im-
plement a form of type providers, (c) can be used to auto-
matically generate type class instances, (d) simplify type-
level programming, and (e) enable embedding of exter-
nal domain-specific languages. We additionally go on to
show that macros can re-implement non-trivial language
features such as code lifting and materialization of type
class instances.

The rest of the paper is organized as follows. Section 2
provides a basic introduction to Scala macros. Section 3 in-
troduces the macro flavors we have experimented with, set-
ting the stage for Section 4, which outlines some of the use
cases that these flavors enable and discusses alternative ways
of achieving similar functionality. Throughout the paper we
deliberately avoid going into the details of our macro system
(expansion semantics, integration with the typechecker, han-
dling of hygiene, interplay between macros, etc) in order to
focus specifically on how macros work together with Scala’s
rich syntax and static type system.

2. Intuition

To get acquainted with metaprogramming in Scala, let us
explore the simplest flavor of Scala macros, def macros,
which were inspired by macros in Lisp [13, 16] and Nemerle
[35].

Def macros are methods, whose calls are expanded at
compile time. Here, expansion means transformation into a
code snippet derived from the method being called and its
arguments. When such macros are expanded, they operate
with a context, which exposes the code to be expanded and
routines to manipulate code snippets.

The def macro context provides the opaque type Code rep-
resenting untyped code snippets, exposes the macroApplica-
tion method, which returns the call being expanded, and de-
fines the q string interpolator, which makes it possible to cre-
ate and pattern match snippets using the convenient string lit-
eral syntax. For example, q"$x + $y" creates a snippet which
represents addition of two arguments specified by snippets x
andy, and val g"$x + $y" = z pattern matches z as addition
and binds x and y to summands.

Asserts are the canonical example of familiar function-
ality, which can be enhanced with def macros. The as-
sert function evaluates the provided boolean expression and
raises an error if the result of evaluation is false. The listing
below shows a possible implementation of the assert macro:

def assert(cond: Boolean, msg: String) = macro assertImpl
def assertImpl(c: Context) = {

import c.universe._

val g"assert($cond, $msg)" = c.macroApplication

q"if (!$cond) raise($msg)"
¥

Here the assert function serves as a fagade for the as-
sertImpl metaprogram, which takes applications of assert
and transforms them into equivalent conditionals. For exam-

ple, assert(2 + 2 == 4, "does not compute") would be
replaced with if (!(2 + 2 == 4)) raise("does not com-
pute").

Even in this simple form, the macro is arguably more use-
ful than a corresponding function in an eager language such
as Scala, because it does not calculate the message unless
the asserted condition is violated. The necessity to shield
the evaluation of the message for performance reasons usu-
ally produces noticeable amounts of boilerplate, which can-
not be easily abstracted away. Scala does support lazy eval-
uation with by-name parameters, but the inner workings of
their internal representation might also degrade performance.
Macros are able to address the performance problem without
downsides.

In addition to def macros, we’ve conceived, implemented,
and experimented with a number of other macro flavors—
macros which provide different interfaces and capabilities
for interacting with the Scala compiler.

3. Hammers: The Macro Flavors

Macros realize the notion of textual abstraction [16], which
consists of recognizing pieces of text that match a specifica-
tion and replacing them according to a procedure. In Lisp,
the origin of macros, programs are represented in a homo-
geneous way with S-expressions. Therefore recognition and
replacement of program fragments can be done uniformly,
regardless of whether a transformed fragment represents e.g.
an arithmetic expression or a function declaration.

In Scala, a language with rich syntax and static types,
compile-time transformations of code naturally distinguish
terms and types, expressions and declarations, following
the architecture of scalac, the Scala compiler. Therefore
it makes sense to recognize the following three realizations
of textual abstraction in Scala: term macros, which expand
terms, #ype macros, which expand types, and macro anno-
tations, which expand definitions. In this section we will
highlight these three kinds of macros along with their fla-
vors, which appear on the intersection with other language
features.

3.1 Def macros

The most natural flavor of term macros are def macros,
briefly covered in the Section 2. To the programmer, def
macros look like regular Scala methods with an unusual
property— when a method call in a Scala program is resolved
to represent an application of a def macro, that macro defini-
tion is expanded by invoking a corresponding metaprogram,
called macro implementation. As a convenience, the macro
engine automatically destructures the method call being ex-
panded and binds type and value arguments of the call to the
corresponding parameters of the metaprogram. The param-

eters and return type of the macro implementation may be
typed, as is the case in the snippet below. In this case, the
types of the parameters and the return type will be used to
typecheck the arguments and the result of the macro:

def printf(format: String, params: Any*): Unit = macro impl
def impl(c: Context)(format: c.Expr[String],

params: c.Expr[Any]*): c.Expr[Unit] = ...
printf("hello %s", "world")

Just like regular methods, def macros can be declared ei-
ther inside or outside of classes, can be monomorphic or
polymorphic, and can participate in type inference and im-
plicit search. The only fundamental difference with regular
methods is that macros are resolved at compile time, which
precludes dynamic dispatch and eta expansion.

Outside of the context of macros, many existing Scala fea-
tures are typically desugared to method calls— either to calls
to methods with special names like selectDynamic and apply-
Dynamic, or to methods with special meaning like implicits.
Existing features that are desugared to method calls are thus
unchanged with the exception of the added capability that
the inserted method calls may additionally be expanded at
compile time. This makes it possible to retain the same user
interface and semantics for all of these existing Scala fea-
tures, while also gaining code generation and compile-time
programmability powers provided by macros.

3.2 Dynamic macros

Beginning with version 2.9, Scala has provided a static
proxying-like facility by rewriting operations with non-
existent fields and calls to non-existent methods on targets
extending the Dynamic trait, into corresponding calls to se-
lectDynamic, updateDynamic and applyDynamic

For example, the following code snippet will print hello
world.

class JsonObject(fields: Map[String, Any]) extends Dynamic {
def selectDynamic(fieldName: String) = fields(fieldName)

}

val jo = new JsonObject(Map("greeting" -> "hello world"))

println(jo.greeting)

If one turns a dobynamic method into a def macro, it be-
comes possible to perform on-demand code generation. For
example, dynamic macros can be used to reduce the amount
of generated code for the situations when comprehensive
code generation is impractical [36].

3.3 String interpolation

String interpolation is a new feature in Scala 2.10, which
introduces extensible string literal syntax and establishes
desugaring rules to standardize programmability.

val world = "world"
s"hello $world"
// desugars into: StringContext("hello ", "").s(world)

String interpolation was specifically designed with macros
in mind. Defined as a regular method, a string interpolator
has to perform potentially costly parsing, validation and in-
terpolation at runtime. On the other hand, implementing an
interpolator as a macro allows the programmer to optimize
these typical tasks of handling external domain-specific lan-
guages.

3.4 Implicit macros

Implicit macros have been discovered to enable materializa-
tion of type class instances encoded with implicits [8], en-
abling boilerplate-free generic programming [14].

In the example below, in order to overcome type erasure,
the generic method requires an instance of the Manifest type
class to be passed along with the x argument. Manifests exist
so as to carry the information about static types prior to
erasure at compile-time, along to runtime. This makes it
possible to know, at runtime, what x’s static type is.

def foo[T](x: T)(implicit m: Manifest[T]) = ...
foo(2) // what the user writes
foo(2) (Manifest.Int) // what happens under the covers

Of course, having to manually provide manifests to call
generic methods that need to work around erasure is not
an option. Therefore, since version 2.8, implicit search in
scalac is hardcoded to automatically synthesize instances of
the Manifest type class when no suitable implicit value can
be found in scope

By declaring an appropriate implicit def as a macro, as
described in Section 4, it becomes possible to unhardcode
the part of the compiler that performs materialization of im-
plicits, simplifying the language and reducing maintenance
efforts. An important point about this technique is that it nat-
urally scales to arbitrary type classes and target types.

3.5 Type macros

Type macros are to types as def macros are to terms. When-
ever scalac encounters an occurrence of a type macro, pos-
sibly applied, it expands this occurrence according to the
underlying macro implementation. In a sense, type macros
generalize upon type aliases (which are already capable of
type-level expansion), by allowing not only type arguments,
but also value arguments, and supporting arbitrary expansion
logic.

In the example below, the Db object extends H2Db("...").
H2Db is a type macro, therefore its application expands by
taking a database connection string, generating a trait con-
taining classes and values corresponding to the tables in the
database, and returning a reference to the generated trait. As
a result, bb ends up inheriting from a synthetic trait, which
encapsulates the given database.

type H2Db(url: String) = macro impl
object Db extends H2Db("jdbc:h2:coffees.h2.db")
// expands into:

// @synthetic trait CoffeesH2Db$1 {
// case class Coffee(...)

// val Coffees: Table[Coffee] = ...
/...

/7 }

// object Db extends CoffeesH2Db$1
println(Db.Coffees.all)

The main use case of type macros is to enable code gen-
eration from a schema that’s fully available at compile time.
Another useful application of type macros is giving terms a
promotion to the type level [46], either explicitly or triggered
by implicit conversions.

3.6 Macro annotations

Despite being able to support a fair share of use cases, term
macros and type macros alone are not enough to exhaus-
tively cover the syntax of Scala. Along with the need for
expression-level and type-level rewritings, there is a neces-
sity in macros that transform definitions.

Note that the notion of a definition transformer, even
though usually in a different form, is available in other lan-
guages. For example, Python has decorators [4] that alter
the functionality of functions, methods and classes they are
attached to, .NET languages have custom attributes which
provide static metadata for their annottees, and the JVM also
supports something like custom attributes under the name of
annotations.

Inspired by Nemerle, which makes it possible for spe-
cially defined .NET macro attributes to transform annotated
definitions, we have developed the notion of macro annota-
tions, definition-transforming macros.

@case class C(x: Int)

// expands into:

// class C(x: Int) {

// /* standard case class methods Like toString */
/7 '}

// object C {

// /* standard case companion methods Like unapply */
/7 }

A motivational use case for macro annotations is the mod-
ularization of the implementations of lazy vals and case
classes so as to be able to migrate from the compiler, to
the Scala standard library as macros.

Another use of macro annotations involves transforma-
tions necessary to support other macros. For instance, se-
rialization macros in the scala-pickling project [25] can
sometimes benefit from helper methods defined in serialized
classes. As another example, LINQ-like techniques [7, 24,
41] that rely on compile-time code lifting often have prob-
lems with externally defined methods, because such methods
might have already been compiled without lifting support.
In such cases macro annotations can be used to generate the
necessary boilerplate.

4. Nails: The Macro Applications

In the previous section, we introduced macro flavors exposed
to Scala programmers, and now we elaborate on the use cases
and techniques enabled by these available macro flavors.

4.1 Language virtualization

Language virtualization is historically the first use case for
Scala macros and also the direct motivator for adding macros
to the language. Since macros have access to code snippets
representing their arguments, it becomes possible to analyze
these snippets and then overload/override the usual seman-
tics of Scala for them, achieving language virtualization and
enabling deep embedding of internal domain-specific lan-
guages [2, 6, 15, 41, 43]

In particular, language virtualization with macros enables
language-integrated queries without the necessity to intro-
duce additional language features such as type-directed lift-
ing [24] or quotations [7].

By implementing query combinators as def macros, data
providers can obtain code snippets representing queries at
compile-time (like pred in the example), remember them for
runtime (by using a lifting function, which takes a snippet
and generates its runtime representation) and then translate
lifted queries to a datasource-specific representation (like in
toList in the example).

class Queryable[T](val query: Query) {
def filter(pred: T => Boolean): Queryable[T] =
macro QueryableMacros.filter[T]

def tolList: List[T] = {
val translatedQuery = query.translate
translatedQuery.execute.asInstanceOf[List[T]]
}
}

object QueryableMacros {
def filter[T: c.WeakTypeTag](c: Context)(pred: c.Code) = {
import c.universe._
val T: c.Type = weakTypeOf[T]
val callee: c.Code = c.prefix
val lifted: c.Code = QueryableMacros.lift(pred)
q"new Queryable[$T]($callee.query.filter($lifted))"

Related work. The comparison of staged approaches [7,
30, 37] with language virtualization is quite interesting, as
both techniques have interesting strengths, which we illus-
trate below for the use case of language-integrated queries.

On the one hand, macros allow for earlier error detection
(query fragments can be partially validated at compile-time)
and have simpler syntax (lifting of queries is done automat-
ically due to the fact that macros operate on code snippets,

which are already lifted, and that makes stage annotations
unnecessary).

On the other hand, staging provides superior composabil-
ity, because macro-based query translation can only trans-
parently lift code inside DSL blocks (i.e. in our case, only
the arguments to query combinators). In the example be-
low, the second invocation of the filter macro will only
see Ident(TermName("isAffordable")), but not the body of
the exernally defined isAffordable function.

case class Coffee(name: String, price: Double)
val coffees: Queryable[Coffee] = Db.coffees

// closed world
coffees.filter(c => c.price < 10)

// open world
def isAffordable(c: Coffee) = c.price < 10
coffees.filter(isAffordable)

It is for that reason that the authors of Slick [41], a macro-
powered data access framework for Scala, support both
macro-based and staged query embeddings, with the former
being concise and the latter being extensible.

There are also middle-ground approaches, which try to get
the best of two worlds. Yin-Yang [15] uses macros to trans-
parently rewrite shallow DSL programs into equivalent deep
DSL programs. Lancet [31] employs bytecode interpretation
and symbolic execution to achieve staging within a JIT com-
piler. This approach allows to sometimes omit stage annota-
tions.

4.2 Type providers

Type providers [36] are a strongly-typed type-bridging mech-
anism, which enables information-rich programming in F#
3.0. A type provider is a compile-time facility, which is ca-
pable of generating definitions and their implementations
based on static parameters describing datasources. In the
example below taken from [36], the programmer uses the
OData type provider, supplying it with a URL pointing to
the data schema, creating a strongly-typed representation of
the datasource, which is then used to write a strongly-typed

query.

type NetFlix = ODataService<"...">
let netflix = NetFlix.GetDataContext()
let avatarTitles =
query { for t in netflix.Titles do
where (t.Name.Contains "Avatar") sortBy t.Name
take 100 }

In Scala, type macros provide a way to generate traits,
classes and objects containing arbitrary Scala code. Gener-
ated definitions can, for example, contain inner classes that
represent database table schemas and lazy values that repre-
sent tables themselves. When encapsulated in an object, gen-

erated inner definitions can then be made visible to the outer
world using the standard import mechanism.

An important feature of type providers in F# is that they
generate datasource representations lazily, providing types
and their members only when explicitly requested by the
compiler. This becomes crucial when generating strongly-
typed wrappers for datasource entities is either redundant
(from performance and/or reflection standpoints) or infeasi-
ble (authors of [36] mention cases where the generated code
is too large for the limits of a .NET process).

The notion of erased type providers cannot be readily
implemented with Scala macros, but there are ways to avoid
some of the undesired code generation burden. Instead of
generating a class per each entity in a datasource it might be
enough to generate a single class for all the entities powered
by dynamic macros. As described in Section 3, extending
the Dynamic trait and implementing corresponding doDynamic
methods with macros allows for on-demand code generation.

4.3 Materialization of type class instances

Type classes, originally introduced in [45] as a principled
approach to ad-hoc polymorphism, have proven to be useful
to support such techniques as retroactive extension, generic
programming and type-level computations.

As codified in [8], type classes can be expressed in Scala
using a type-directed implicit parameter passing mechanism.
In fact, type classes are very popular in Scala, used to work
around erasure [27], express generic numeric computations
[28], support generic programming [32], implement serial-
ization [25, 44], and so on.

The example below defines the Showable type class, which
abstracts over a prettyprinting strategy. The accompanying
show method takes two parameters: an explicit one, the tar-
get, and an implicit one, which carries the instance of Show-
able. After being declared like that, show can be called with
only the target provided, and scalac will try to infer the cor-
responding type class instance from the scope of the call site
based on the type of the target. If there is a matching implicit
value in scope, it will be inferred and compilation will suc-
ceed, otherwise a compilation error will occur.

trait Showable[T] { def show(x: T): String }
def show[T](x: T)(implicit s: Showable[T]) = s.show(x)

implicit object IntShowable { def show(x: Int) = x.toString }
show(42) // "42"
show("42") // compilation error

One of the well-known problems with type classes, in
general and in particular in Scala, is that instance definitions
for similar types are frequently very similar, which leads to
proliferation of boilerplate code.

For example, for a lot of objects prettyprinting means
printing the name of their class and the names and values
of the fields. Even though this and similar recipes are very
concise, in practice it is often impossible to implement them

concisely, so the programmer is forced to repeat himself over
and over again. This very use case can be implemented with
runtime reflection, which is available in the Java Virtual
Machine, but oftentimes reflection is either too imprecise
because of erasure or too slow because of the overhead it
imposes.

class C(x: Int)

implicit def cShowable = new Showable[C] {
def show(c: C) = "C(" + c.x + ")"

b

class D(x: Int)
implicit def dShowable = new Showable[D] {
def show(d: D) = "D(" + d.x + ")"
}
With implicit macros it becomes possible to eliminate the

boilerplate by completely removing the need to manually
define type class instances.

trait Showable[T] { def show(x: T): String }
object Showable {

implicit def materializeShowable[T]: Showable[T] = macro ...

}

Instead of writing multiple instance definitions, the pro-
grammer defines a single materializeShowable macro in the
companion object of the Showable type class. Members of a
companion object belong to implicit scope of an associated
type class, which means that in cases when the programmer
does not provide an explicit instance of Showable, the mate-
rializer will be called. Upon being invoked, the materializer
can acquire a representation of T and generate the appropriate
instance of the Showable type class.

A nice thing about implicit macros is that they seam-
lessly meld into the pre-existing infrastructure of implicit
search. Such standard features of Scala implicits as multi-
parametricity and overlapping instances are available to im-
plicit macros without any special effort from the program-
mer. For example, it is possible to define a non-macro pret-
typrinter for lists of prettyprintable elements and have it
transparently integrated with the macro-based materializer.

implicit def listShowable[T](implicit s: Showable[T]) =
new Showable[List[T]] {
def show(x: List[T]) = {
x.map(s.show) .mkString("List(", ", ", ")")
}
}

show(List(42)) // prints: List(42)

In this case, the required instance Showable[Int] would be
generated by the materializing macro defined above. Thus,
by making macros implicit, they can be used to automate the
materializtion of type class instances, while at the same time
seamlessly integrating with non-macro implicits.

Related work. It it interesting to compare the macro-
based materialization approach with a generic deriving mech-
anism proposed for Haskell in [19].

Given that the programmer defines an isomorphism be-
tween datatypes in the program and their type representa-
tions, the deriving mechanism makes it possible to write
a generic function that provides an implementation of a
derived type class and works across arbitrary isomorphic
datatypes. This eliminates most of the boilerplate associated
with type class instantiations, and the rest (auto-generation
of isomorphisms and the necessity to define trivial type class
instances, which delegate to the generic implementation) can
be implemented in the compiler.

If we compare the two aforementioned techniques of
type class instance generation, it can be seen that in the
isomorphism-based approach derived instances are inter-
preted, relying on a generic programming framework to ex-
ecute the underlying generic function while traversing the
representation of the underlying type. To the contrast, in the
macro-based approach the instances are compiled, being spe-
cialized to the underlying type at compile time, removing the
overhead of interpretation. This brings a natural question of
whether it is possible to automatically produce compiled in-
stances from interpreted ones.

[1] describes a manual translation technique based on
compile-time metaprogramming capabilities of Haskell and
a collection of code generating combinators, while [20] out-
lines a semi-automatic facility that leverages advanced opti-
mization features of Glasgow Haskell Compiler. However,
to the best of our knowledge, the question of fully automatic
translation remains open.

4.4 Type-level programming

Type-level programming is a technique which involves writ-
ing functions that operate on types and using these functions
to encode advanced type constraints and achieve precision in
type signatures. With this technique it is, for example, possi-
ble to express functional dependencies [8], something which
cannot be achieved in typical variations of System F,.

While type-level programming has proven to be useful
in Scala, being a fundamental feature enabling the design of
standard collections [27], its applications remain limited.

In our opinion one of the reasons for this is that type-
level functions can only be written using implicits, which
provide a clever yet awkward domain-specific language [8]
for expressing general-purpose computations. With implicits
being traditionally underspecified and relying on multiple
typechecker features playing in concert to express non-trivial
computations, it is hard to write robust and portable type-
level functions. Finally there is a problem of performance,
which is a consequence of the fact that implicit-based type
functions are interpreted, and that interpretation is done by
a launching a series of implicit searches, which repeatedly
scan the entire implicit scope.

Compile-time metaprogramming provides an alternative
approach to type-level computations, allowing the program-
mer to encode type manipulations in macros, written in full-
fledged Scala, which has simpler semantics and predictable
performance in comparison with the language of implicits.

As an example, we now explore how type-level compu-
tations help to verify communication between actors in dis-
tributed systems. In Akka [42], a toolkit and runtime for real-
izing message-passing concurrency on the JVM, actors typi-
cally interact using an untyped tell method. Since actors are
able to send messages of arbitrary types to one another, type
information is lost on the receiver side, and can typically only
be recovered using pattern matching, loosening type guaran-
tees.

abstract class ActorRef {

def tell(msg: Any, sender: ActorRef): Unit = ...

To address the type unsafety problem, Akka provides a
channel abstraction and introduces type specifications for
channels [18]. As actors sometimes need to work with mul-
tiple message types (e.g. a main communications channel
might support both payload messages forwarded to workers
and administrative messages overseeing routing or throt-
tling), a simple Channel[Input, Output] signature is not
enough. Type specification of a channel should essentially be
a type-level multimap from request types to response types.
In Akka such multimaps are represented as heterogenerous
lists of tuples. For example, the (A, B) :+: (C, D) :+:
TNil type specifies a channel, which can receive messages
of types A and ¢, responding with messages of types B and D
correspondingly.

The challenge in the design of typed channels is to devise
a mechanism of typechecking tell, which would typecheck
its arguments against the multimap describing the receiver.
The facts about the arguments that one might wish to verify
range from simple ones such as “does the receiver support
a given message type?” and “does the sender support any
possible reply type from the receiver?” (the reply problem)
to more complex ones like “is there a guarantee that on
each step of the communication between the sender and the
receiver, any possible message type can be handled by the
corresponding actor?” (the ping-pong problem).

In order to implement the required type-level predicates,
typed channels turn the tell method into a macro. Being able
to get a hold of compile-time representations of the types in
question (the type of the message and specifications of the
sender and the receiver), the tell macro analyzes these types
using the straightforward pattern matching and collection
operations.

For example, the replycChannels function presented below
takes a channel specification along with a message type and
returns a list of possible reply types. replyChannels is then

used in ping-pong analysis; if at a certain iteration of the
analysis the resulting list is empty, the tell macro reports
an error.

def replyChannels(list: Type, msg: Type): List[Type] = {
def rec(l: Type, acc: List[Type]): List[Type] = {

1 match {
case TypeRef(_, _, TypeRef(_, _, in :: out ::

tail :: Nil)

Nil) ::

if msg <:< in =>
rec(tail, if (acc contains out) acc else out :: acc)
case TypeRef(_, _, _ :: tail :: Nil) =>
rec(tail, acc)
case _ => acc.reverse
}
}
val n = typeOf[Nothing]
if (msg =:= n) List(n) else rec(list, Nil)
¥

Related work. Despite being straightforward to imple-
ment and debug in comparison with implicits, macros as they
stand now are however not necessarily the ultimate type-
level programming technique. On the one hand, type-level
computations with macros are more natural and more pow-
erful than when written with implicits. Also, an important
practical advantage of the macro-based approach is the qual-
ity of error messages, which can be tailored to precisely iden-
tify and present the problem to the user, in comparison with
variations on the generic “could not find implicit value of
type X” error. But on the other hand, naive manipulations
with raw type representations (such as e.g. TypeRef decon-
structions in the implementation of replyChannels) are quite
low-level. The balance between declarativeness of implicits
and simplicity of macros has yet to be found.

An alternative approach to simplification of type-level
programming involves incorporating some of the features
present in dependently-typed languages such as Coq [38]
and Agda [26] to make certain term-level constructs usable
on the type level. In [46] authors present an extension to
Haskell, which automatically promotes value and type con-
structors to become type and kind constructors, offering con-
siderable gains in expressiveness. It would be interesting to
see whether it is possible to use macros, which already know
their way around the typechecker, as a vehicle for imple-
menting a similar extension to Scala.

4.5 External domain-specific languages

External domain-specific languages are relevant even in lan-
guages like Scala which were designed to be friendly to inter-
nal DSLs. Regular expressions, XML, JSON, HTML, SQL,
text templates; all of these can be succinctly represented as
programs in external DSLs.

Without special language or tool support, programs view
external DSLs as passive strings, which can be parsed and
interpreted, but cannot communicate with the main program.

Compile-time metaprogramming provides a way to animate
external DSLs, making them able to analyze and possibly
influence the enclosing program [39].

In Scala, external DSLs can be embedded into code by
the virtue of string interpolation, which standardizes exten-
sible string literals and the notion of interpolation both for
construction and pattern matching purposes.

For example, with string interpolation it is possible to de-
fine a domain-specific language for JSON, having the con-
venient json"..." syntax for JSON objects.

implicit class JsonHelper(val sc: StringContext) {
def json(args: Any*): JSONObject = {
val strings = sc.parts.iterator
val expressions = args.iterator
var buf = new StringBuffer(strings.next)
while(strings.hasNext) {
buf append expressions.next
buf append strings.next
}
parseJson(buf)
}
}

After the programmer defines the StringContext.json ex-
tension method, as shown on the snippet above, scalac will
desugar json"..." and json"""...""" literals into calls to
that method. Static parts of literals (like brackets and com-
mas in json"[$foo, $bar]") are then available in String-
Context.parts), while interpolated parts (like foo and bar in
the previous example) are passed as arguments to the exten-
sion method. String interpolation additionally supports pat-
tern matching.

Turning the json method into a macro opens a number of
possibilities to the DSL author. First of all, it allows to move
the cost of parsing to compile-time and to report previously
runtime errors at compile time. Secondly, it is often possi-
ble to statically validate interpolated expressions against the
locations they are interpolated into. For example, the json
macro can catch the following typo at compile time by fig-
uring out that it does not make sense to interpolate a number
into a location that expects a string:

val name = "answer"
val value = 42
json"{$value: $value}"

Moreover, by the virtue of being run inside the compiler,
interpolation macros can interact with the typechecker, ask-
ing it for information and even influencing typing. For ex-
ample, the quasiquoting interpolator [33] uses the types of its
arguments to resolve occasional ambiguities in the grammar
of interpolated Scala and also conveys the exact types of the
variables bound during pattern matching to the typechecker.

Integration with the typechecker of the host program can
be used to typecheck external DSLs (this direction of re-
search is very appealing in the context of quasiquoting, but

one could also imagine interpolations used to generate pro-
grams in other programming languages also benefitting from
a typechecking facility). This is however non-trivial, because
unlike MetaML-like quotations [7, 37], interpolation-based
quasiquotes do not come with the guarantees of typeability
(e.g. with such quasiquotes a well-typed program can be as-
sembled from smaller fragments that do not make sense on
their own) and can have holes that preclude typechecking.

The example provided below receives a definition of a
method, takes it apart and creates its asynchronous analog
by changing the name, wrapping the body in a future and
adjusting the return type accordingly.

val gq"def $name($params): $tpt = $body" = methodDef

val tptl = if (tpt.isEmpty) tpt else q"Future[$tresult]"
val namel = TermName("async" + name.capitalize)

q"def $namel($params): $tptl = future { $body }"

Note that none of the quasiquotes in the example are ty-
peable as is, yet there is still some room for typechecking by
validating whether the future function and the Future type
constructor are imported and have appropriate type signa-
tures.

Related work. Similar approaches to embedding domain-
specific languages have been explored in Haskell [21] and
Ocaml [47], which also provide ways to declare isolated
blocks of code written in an external language and use
those blocks for construction and deconstruction of domain-
specific objects.

However it remains to be explored how to integrate ex-
ternal languages into the type system of the host. As shown
by the experiences of Template Haskell [34] and Nemerle
[35], this is possible for the particular case of quasiquotes,
though both approaches are tightly integrated into the cor-
responding macro systems, so it is not immediately obvious
how to generalize them. [9] introduces SoundExt, an auto-
mated and modular mechanism to specify typing rules for
domain-specific languages in a framework for language ex-
tensibility.

A promising direction of research into integration of
external domain-specific languages involves syntactic lan-
guage extensibility. Replacing the string interpolation front-
end with a more sophisticated mechanism akin to the one
described in [10], would retain the power of compile-time
programmability and integration with the typechecker and
also gain the flexibility and modularity of the recent devel-
opments in parsers.

4.6 Language extensibility

One man’s language feature is another man’s macro. This
principle is well-known to the practitioners of lisps [11, 12],
and we have also put it in action in Scala. There already is
a handful of pre-existing or suggested language features that
we were able or plan to implement with macros, simplifying
the Scala compiler: type-directed lifting, autogeneration of
type manifests, xml literals, source locations, case classes,

lazy values, enumerations, implicit classes and asynchronous
computations [40, 43].

In the example below we illustrate idiom brackets [23] for
Scala, implemented in a library [17] with a pair of macros
named idiom and $.

The idiom macro takes a type constructor, which repre-
sents an idiom instance, and a code block, which will get
some of its subexpressions transformed. The $ macro demar-
cates transformation boundaries. Inside it, all non-idiom val-
ues are wrapped in the pure function defined by the current
idiom introduced by the enclosing idiom macro, and all func-
tion applications are routed to go through app, again defined
by the current idiom (the actual transformation rules are a
bit more complicated, but this does not matter for the pur-
poses of the demonstration). Implementations of pure and
app are looked up by the $ macro via an implicit search for
an instance of the Idiom type class for the current idiom type
constructor.

implicit val option = new Idiom[Option] {
def pure[A](a: => A): Option[A] = Option(a)
def app[A, B](ff: Option[A => B]): Option[A] => Option[B] =
aa => for (f <- ff; a <- aa) yield f(a)

idiom[Option] {

$(Some(42) + 1) should equal (Some(43))

$(Some(10) + Some(5) * Some(2)) should equal (Some(20))
}

Note how macros have been able to implement function-
ality, which requires extensions to Haskell [22] and Idris [3],
and how implicits make the macro modular and configurable
by the user.

5. Conclusion and Future Work

We have designed and implemented a compile-time metapro-
gramming system for Scala, a language with rich syntax and
static types.

The most important aspect of our design is that we have
been able to naturally integrate macros with pre-existing lan-
guage features, preserving their familiar interface and se-
mantics, while at the same time empowering them with code
generation and compile-time programmability capabilities.

Case studies show that with Scala macros it is possible to
achieve language virtualization, emulate type providers, ma-
terialize type class instances, simplify type-level program-
ming, embed external domain-specific languages and imple-
ment non-trivial language features.

Having experimented with a number of macro flavors and
use cases that these flavors enable, we now plan to pro-
ceed with finding a minimalistic system which would retain
the useful properties of the current design in a flexible and
tractable framework. Among the design issues that need to
be solved along the way are determining the appropriate de-
tail of the compiler API, specifying hygiene and referential

transparency of code manipulations, standardizing the proto-
col of communication between macros, and coming up with
a predictable yet flexible execution model for macros.

Another interesting direction of future research is explo-
ration of compile-time capabilities that don’t quite fit into
the model of textual abstraction. For instance, we would like
to find a robust way for macros to interact with the com-
piler’s symbol table in order to provide macro writers with
predictable APIs to add new classes, change existing ones,
introduce variables shared between macro expansions, etc.
And yet another topic is finding a robust and predictable way
to deeply integrate macros with the typechecker, e.g. grant-
ing macros powers to influence type inference.

References

[1] M. D. Adams and T. DuBuisson. Template your boilerplate:
using template haskell for efficient generic programming. In
Haskell 2012, Copenhagen, Denmark, 13 September 2012,
pages 13-24,2012.

[2] S. Behnke. Scala macros use case: Teaching
scala. https://www.learnscala.de/2013/01/28/en/
scala-macros-use-case-teaching-scala, 2013.

[3] E. Brady. Implementation of a general purpose programming
language with dependent types. Technical report, 2013.

[4] R. Brewer. Optimal syntax for python decorators. http:
//www.aminus.org/rbre/python/pydec.html, Aug. 2004.

[5] E. Burmako and M. Odersky. Scala macros, a technical report.
In Third International Valentin Turchin Workshop on Meta-
computation, 2012.

[6] P. Butcher. Scalamock, native scala mocking framework.
https://github.com/paulbutcher/ScalaMock, 2012.

[7] J. Cheney, S. Lindley, and P. Wadler. The essence of language-
integrated query. Technical report, Mar. 2013.

[8] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes
as objects and implicits. In OOPSLA, pages 341-360, 2010.

[9] S. Erdweg and F. Lorenzen. Modular and automated type-
soundness verification for language extensions, 2013. To ap-
pear.

[10] S. Erdweg, T. Rendel, C. Kistner, and K. Ostermann. Sug-
arJ: library-based syntactic language extensibility. ACM SIG-
PLAN Notices, 46(10):391-406, Oct. 2011. OOPSLA 11 pro-
ceedings.

[11] M. Felleisen. Adding types to untyped languages. In
A. Kennedy and N. Benton, editors, TLDI 2010, Madrid,
Spain, January 23, 2010, pages 1-2. ACM, 2010.

[12] M. Flatt, R. B. Findler, and M. Felleisen. Scheme with classes,
mixins, and traits. In APLAS 2006, Sydney, Australia, Novem-
ber 8-10, 2006, volume 4279, pages 270-289, 2006.

[13] M. Flatt, R. Culpepper, D. Darais, and R. B. Findler. Macros
that work together - compile-time bindings, partial expansion,
and definition contexts. J. Funct. Program, 22(2):181-216,
2012.

[14] S. L. P. Jones and R. Lammel. Scrap your boilerplate. In
APLAS 2003, Beijing, China, November 27-29, 2003, 2003.

[15] V. Jovanovic, V. Nikolaev, N. D. Pham, V. Ureche, S. Stucki,
C. Koch, and M. Odersky. Yin-yang: Transparent deep em-
bedding of dsls. Technical Report EPFL-REPORT-185832,
EPFL, Lausanne, Switzerland, 2013.

[16] E. M. Kohlbecker. Syntactic Extensions in the Programming
Language Lisp. PhD thesis, Indiana University, Bloomington,
IN, Aug. 1986.

[17] E. Kotelnikov. Scala-idioms, idiom brackets for scala. https:
//github.com/aztek/scala-idioms, 2013.

[18] R. Kuhn. Akka, typed channels (experimental), version 2.2-
SnapShOt. http://doc.akka.io/docs/akka/snapshot/scala/
typed-channels.html, 2013.

[19] J. P. Magalhaes, A. Dijkstra, J. Jeuring, and A. L6h. A generic
deriving mechanism for haskell. In Haskell 2010, Baltimore,
MD, USA, 30 September 2010, pages 37-48. ACM, 2010.

[20] J. P. Magalhaes, S. Holdermans, J. Jeuring, and A. Loh. Opti-
mizing generics is easy! In PEPM 2010, Madrid, Spain, Jan-
uary 18-19, 2010, pages 3342, 2010.

[21] G. Mainland. Why it’s nice to be quoted: quasiquoting for
haskell. In Haskell 2007, Freiburg, Germany, September 30,
2007, pages 73-82,2007.

[22] C. McBride. The strathclyde haskell enhancement. https:

//personal.cis.strath.ac.uk/conor.mcbride/pub/she/.

[23] C. McBride and R. Paterson. Applicative programming with
effects. J. Funct. Program, 18(1):1-13, 2008.

[24] E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling
object, relations and XML in the NET framework. In S. Van-
summeren, editor, PODS 2006, page 706, Chicago, Illinois,
June 2006.

[25] H. Miller, P. Haller, E. Burmako, and M. Odersky. Object-
oriented pickler combinators and an extensible generation
framework, Mar. 2013. To appear.

[26] U. Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 1997.

[27] M. Odersky and A. Moors. Fighting bit rot with types (ex-
perience report: Scala collections). In FSTTCS 2009, Decem-
ber 15-17, 2009, lIT Kanpur, India, volume 4, pages 427451,
2009.

[28] E. Osheim. Spire, powerful new number types and numeric
abstractions for scala. https://github.com/non/spire, 2013.

[29] Postsharp Technologies. Producing high-quality software with
aspect-oriented programming. Technical report, July 2011.

[30] T. Rompf and M. Odersky. Lightweight modular staging: a
pragmatic approach to runtime code generation and compiled
DSLs. ACM SIGPLAN Notices, 46(2):127-136, Feb. 2011.

[31] T. Rompf, A. K. Sujeeth, K. J. Brown, H. Lee, H. Chafi,
K. Olukotun, and M. Odersky. Project lancet: Surgical pre-
cision jit compilers, Mar. 2013. To appear.

[32] M. Sabin and E. Burmako. Datatype generic programming in
scala with shapeless and inference driving macros, Apr. 2013.
To appear.

[33] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for
scala. Technical Report EPFL-REPORT-185242, EPFL, Lau-
sanne, Switzerland, 2013.

[34] T. Sheard and S. Peyton Jones. Template metaprogramming
for Haskell. In ACM SIGPLAN Haskell Workshop 02, pages
1-16, Oct. 2002.

[35] K. Skalski. Syntax-extending and type-reflecting macros in
an object-oriented language. Master’s thesis, University of
Warsaw, Poland, 2005.

[36] D. Syme, K. Battocchi, K. Takeda, D. Malayeri, J. Fisher,
J. Hu, T. Liu, B. McNamara, D. Quirk, M. Taveggia, W. Chae,
U. Matsveyeu, and T. Petricek. F# 3.0 - strongly-typed lan-

guage support for internet-scale information sources. Techni-
cal Report MSR-TR-2012-101, Microsoft Research, septem-
ber 2012.

[37] W. Taha. Multi-Stage Programming : Its Theory and Applica-
tions. PhD thesis, Oregon Graduate Institute of Science and
Technology, Portland, OR, 1999.

[38] T. C. Team. The coq proof assistant. http://coq.inria.fr,
2012.

[39] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and
M. Felleisen. Languages as libraries. PLDI, 46(1993):132—
141, 2010.

[40] M. Torgersen. Asynchronous programming in c# and vb.net.
Technical report, 2010.

[41] Typesafe Inc. Scala language integrated connection kit. https:
//github.com/slick/slick, 2012.

[42] Typesafe Inc. Akka. http://akka.io/, 2013.

[43] Typesafe Inc. An asynchronous programming facility for
scala. https://github.com/scala/async, 2013.

[44] P. Voitot. Unveiling play 2.1 json api - bonus : Json inception
(based on scala 2.10 macros). http://mandubian.com/2012/11/
11/3SON-inception/, 2012.

[45] P. Wadler and S. Blott. How to make ad-hoc polymorphism
less ad hoc. In POPL, pages 60—-76, 1989.

[46] S. Weirich, B. A. Yorgey, J. Cretin, S. P. Jones, D. Vytiniotis,
and J. P. Magalhaes. Giving haskell a promotion. Jan. 28 2012.

[47] H. Zhang and S. Zdancewic. Fan: compile-time metaprogram-
ming for ocaml, Apr. 2013. To appear.

